
MATLAB® Compiler SDK™
MATLAB® Code Deployment Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ MATLAB® Code Deployment Guide
© COPYRIGHT 2012–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Overview
1

How Does MATLAB Deploy Functions? . 1-2

MEX-Files, DLLs, or Shared Libraries . 1-3

Dependency Analysis . 1-4
Function Dependency . 1-4
Data File Dependency . 1-4

Deployable Archive . 1-5
Additional Details . 1-6

Write Deployable MATLAB Code
2

Write Deployable MATLAB Code . 2-2
Packaged Applications Require Functions . 2-2
Packaged Applications Do Not Process MATLAB Files at Run Time 2-2
Do Not Rely on Changing Directory or Path to Control the Execution of

MATLAB Files . 2-3
Use isdeployed Functions To Execute Deployment-Specific Code Paths . . . 2-3
Gradually Refactor Applications That Depend on Noncompilable Functions

. 2-3
Do Not Create or Use Nonconstant Static State Variables 2-3
Get Proper Licenses for Toolbox Functionality You Want to Deploy 2-4

State-Dependent Functions . 2-5
Does My MATLAB Function Carry State? . 2-5
Defensive Coding Practices . 2-5
Techniques for Preserving State . 2-6

Calling Shared Libraries in Deployed Applications 2-7

MATLAB Data Files in Compiled Applications . 2-8
Explicitly Including MATLAB Data files Using the %#function Pragma . . . 2-8
Load and Save Functions . 2-8

Share MATLAB Runtime Instances . 2-11
What Is a Singleton MATLAB Runtime? . 2-11
Advantages and Disadvantages of Using a Singleton 2-11

iii

Contents

Package a C/C++ Shared Library
3

Install an ANSI C or C++ Compiler . 3-2
Supported ANSI C and C++ Windows Compilers 3-2
Supported ANSI C and C++ UNIX Compilers . 3-2
Common Installation Issues and Parameters . 3-2

Create a C Shared Library with MATLAB Code . 3-4
Create Functions in MATLAB . 3-4
Create a C Shared Library Using the Library Compiler App 3-5
Customize the Application and Its Appearance . 3-6
Package the Application . 3-7

Create C/C++ Shared Libraries from Command Line 3-9
Execute Compiler Projects with deploytool . 3-9
Package a Shared Library with mcc . 3-9
Differences Between Compiler Apps and Command Line 3-10

Distribute C/C++ Shared Libraries to Application Developers 3-11

Package a .NET Assembly
4

Generate a .NET Assembly and Build a .NET Application 4-2
Create Function in MATLAB . 4-2
Create .NET Assembly Using Library Compiler App 4-2
Specify Assembly File Settings . 4-3
Customize the Application and Its Appearance . 4-4
Package the Application . 4-5
Build a .NET Application . 4-6

Package .NET Assemblies from Command Line . 4-7
Execute Compiler Projects with deploytool . 4-7
Create .NET Assemblies with mcc . 4-7
Differences Between Compiler Apps and Command Line 4-8

Distribute .NET Assemblies to Application Developers 4-10

Package a Java Application
5

Configure Your Java Environment . 5-2
Install the Required JDK . 5-2
Set JAVA_HOME . 5-2
Set the CLASSPATH . 5-3
Configure the Native Library Path Variables . 5-3

iv Contents

Generate a Java Package and Build a Java Application 5-4
Create Function in MATLAB . 5-4
Create Java Application Using Library Compiler App 5-4
Specify Package Settings . 5-5
Customize the Application and Its Appearance . 5-5
Package the Application . 5-7
Install and Implement MATLAB Generated Java Application 5-8

Package Java Applications from Command Line . 5-10
Execute Compiler Projects with deploytool . 5-10
Package a Java Application with mcc . 5-10
Differences Between Compiler Apps and Command Line 5-11

Map Functions to Java Class Methods . 5-12
Map Functions to Java Classes with the Library Compiler App 5-12
Map Functions to Java Classes with mcc . 5-13

Distribute Java Applications to Application Developers 5-14

Package a Python Application
6

Generate a Python Package and Build a Python Application 6-2
Create Function in MATLAB . 6-2
Create Python Application Using Library Compiler App 6-2
Specify Package Settings . 6-3
Customize the Application and Its Appearance . 6-3
Package the Application . 6-5
Install and Run MATLAB Generated Python Application 6-5

Package Python Applications from Command Line 6-6
Execute Compiler Projects with deploytool . 6-6
Package a Python Application with mcc . 6-6
Differences Between Compiler Apps and Command Line 6-6

Distribute Python Applications to Application Developers 6-8

Compile a Deployable Archive for MATLAB Production Server
7

Package Deployable Archives with Production Server Compiler App 7-2
Create Function In MATLAB . 7-2
Create Deployable Archive with Production Server Compiler App 7-2
Customize the Application and Its Appearance . 7-3
Package the Application . 7-3

Package Deployable Archives from Command Line 7-5
Execute Compiler Projects with deploytool . 7-5
Package a Deployable Archive with mcc . 7-5

v

Differences Between Compiler Apps and Command Line 7-5

Build Excel Add-In and Deployable Archive . 7-7

Package a COM Component
8

Create a Generic COM Component with MATLAB Code 8-2
Create Function in MATLAB . 8-2
Create Generic COM Component Using Library Compiler App 8-2
Customize the Application and Its Appearance . 8-3
Package the Application . 8-4

Package COM Components from Command Line . 8-6
Execute Compiler Projects with deploytool . 8-6
Create COM Component with mcc . 8-6
Differences Between Compiler Apps and Command Line 8-8

Distribute COM Components to Application Developers 8-10

Customizing a Compiler Project
9

Customize an Application . 9-2
Customize the Installer . 9-2
Manage Required Files in Compiler Project . 9-4
Sample Driver File Creation . 9-5
Specify Files to Install with Application . 9-6
Additional Runtime Settings . 9-6
API Selection for C++ Shared Library . 9-7

Manage Support Packages . 9-9
Using a Compiler App . 9-9
Using the Command Line . 9-9

Advanced Uses of the Command Line Compiler
10

Simplify Compilation Using Macros . 10-2
Macros . 10-2
Working With Macros . 10-2

Invoke MATLAB Build Options . 10-4
Specify Full Path Names to Build MATLAB Code 10-4
Using Bundles to Build MATLAB Code . 10-4

vi Contents

MATLAB Runtime Component Cache and Deployable Archive Embedding
. 10-6

Overriding Default Behavior . 10-7
For More Information . 10-7

Work with the MATLAB Runtime
11

MATLAB Runtime Startup Options . 11-2
Retrieve MATLAB Runtime Startup Options . 11-2

Using the MATLAB Runtime User Data Interface 11-4
MATLAB Functions . 11-4
Set and Retrieve MATLAB Runtime Data for Shared Libraries 11-4

Display the MATLAB Runtime Initialization Messages 11-6
Best Practices . 11-6

Limitations and Restrictions
12

Limitations . 12-2
Packaging MATLAB and Toolboxes . 12-2
Fixing Callback Problems: Missing Functions . 12-2
Finding Missing Functions in a MATLAB File . 12-4
Suppressing Warnings on the UNIX System . 12-4
Cannot Use Graphics with the -nojvm Option . 12-4
Cannot Create the Output File . 12-4
No MATLAB File Help for Packaged Functions . 12-4
No MATLAB Runtime Versioning on Mac OS X . 12-5
Older Neural Networks Not Deployable with MATLAB Compiler 12-5
Restrictions on Calling PRINTDLG with Multiple Arguments in Packaged

Mode . 12-5
Packaging a Function with which Does Not Search Current Working Folder

. 12-5
Restrictions on Using C++ SetData to Dynamically Resize an mwArray

. 12-6
Accepted File Types for Packaging . 12-6

Functions Not Supported for Compilation by MATLAB Compiler and
MATLAB Compiler SDK . 12-7

vii

Functions
13

Apps
14

viii Contents

Overview

• “How Does MATLAB Deploy Functions?” on page 1-2
• “MEX-Files, DLLs, or Shared Libraries” on page 1-3
• “Dependency Analysis” on page 1-4
• “Deployable Archive” on page 1-5

1

How Does MATLAB Deploy Functions?
To deploy MATLAB functions, the compiler performs these tasks:

1 Analyzes files for dependencies using a dependency analysis function. Dependencies affect
deployability and originate from functions called by the file. Deployability is affected by:

• File type — MATLAB, Java®, MEX, and so on.
• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis, see “Dependency
Analysis” on page 1-4.

2 Validates MEX-files. In particular, mexFunction entry points are verified.

For more details about MEX-file processing, see “MEX-Files, DLLs, or Shared Libraries” on page
1-3.

3 Creates a deployable archive from the input files and their dependencies.

For more details about deployable archives see “Deployable Archive” on page 1-5.
4 Generates target-specific wrapper code.
5 Generates target-specific binary package.

For library targets such as C++ shared libraries, Java packages, or .NET assemblies, the
compiler invokes the required third-party compiler.

1 Overview

1-2

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that the dependency analyzer can
find them. Doing so allows you to avoid many common compilation problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries to determine
their dependencies, explicitly include all executable files these files require. To do so, use either
the mcc -a option or the Files required for your application to run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB function called by a MEX-
file, DLL, or shared library, then manually include that function. To do so, use either the mcc -a
option or the Files required for your application to run field in the compiler app.

• Not all functions are compatible with the compiler. Check the file mccExcludedFiles.log after
your build completes. This file lists all functions called from your application that you cannot
deploy.

 MEX-Files, DLLs, or Shared Libraries

1-3

Dependency Analysis

In this section...
“Function Dependency” on page 1-4
“Data File Dependency” on page 1-4

MATLAB Compiler™ uses a dependency analysis function to determine the list of necessary files to
include in the generated package. Sometimes, this process generates a large list of files, particularly
when MATLAB object classes exist in the compilation and the dependency analyzer cannot resolve
overloaded methods at package time. Dependency analysis also processes include/exclude files on
each pass.

Tip To improve package time performance and lessen application size, prune the path with the mcc
command’s -N and -p flags. You can also specify Files required for your application in the
compiler app.

Function Dependency
The dependency analyzer searches for executable content such as:

• MATLAB files
• P-files

Note If the MATLAB file corresponding to the p-file is not available, the dependency analysis
cannot determine the p-file’s dependencies.

• .fig files
• MEX-files

Data File Dependency
In addition to executable content listed above, MATLAB Compiler can detect and automatically
include files that your MATLAB functions access by calling any of these functions: audioinfo,
audioread, csvread, daqread, dlmread, fileread, fopen, imfinfo, importdata, imread,
load, matfile, mmfileinfo, open, readtable, type, VideoReader, xlsfinfo, xlsread,
xmlread, and xslt.

If you are using the compiler app, these data files are automatically added to the Files required for
your application to run area of the app.

See Also
applicationCompiler | mcc

More About
• Application Compiler

1 Overview

1-4

Deployable Archive
Each application or shared library you produce using the compiler has an embedded deployable
archive. The archive contains all the MATLAB based content (MATLAB files, MEX-files, and so on). All
MATLAB files in the deployable archive are encrypted using the Advanced Encryption Standard (AES)
cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain encrypted. For
more information on how to extract the deployable archive refer to the references in the following
table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to
MATLAB Compiler SDK C/C++ integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding”
MATLAB Compiler SDK .NET integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding”
MATLAB Compiler SDK Java integration “Deployable Archive Embedding and Extraction”
MATLAB Compiler Excel® integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding” (MATLAB
Compiler)

 Deployable Archive

1-5

Additional Details
Multiple deployable archives, such as those generated with COM components, .NET assemblies, or
Excel add-ins, can coexist in the same user application. You cannot, however, mix and match the
MATLAB files they contain. You cannot combine encrypted and compressed MATLAB files from
multiple deployable archives into another deployable archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique cryptographic key.
MATLAB files with different keys, placed in the same deployable archive, do not execute. If you want
to generate another application with a different mix of MATLAB files, recompile these MATLAB files
into a new deployable archive.

The compiler deletes the deployable archive and generated binary following a failed compilation, but
only if these files did not exist before compilation initiates. Run help mcc -K for more information.

1 Overview

1-6

Caution Release Engineers and Software Configuration Managers: Do not use build procedures
or processes that strip shared libraries on deployable archives. If you do, you can possibly strip the
deployable archive from the binary, resulting in run-time errors for the driver application.

 Deployable Archive

1-7

Write Deployable MATLAB Code

• “Write Deployable MATLAB Code” on page 2-2
• “State-Dependent Functions” on page 2-5
• “Calling Shared Libraries in Deployed Applications” on page 2-7
• “MATLAB Data Files in Compiled Applications” on page 2-8
• “Share MATLAB Runtime Instances” on page 2-11

2

Write Deployable MATLAB Code

In this section...
“Packaged Applications Require Functions” on page 2-2
“Packaged Applications Do Not Process MATLAB Files at Run Time” on page 2-2
“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files” on page 2-
3
“Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 2-3
“Gradually Refactor Applications That Depend on Noncompilable Functions” on page 2-3
“Do Not Create or Use Nonconstant Static State Variables” on page 2-3
“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 2-4

Packaged Applications Require Functions
Applications implemented with MATLAB Compiler SDK and MATLAB Production Server™ access
MATLAB code through APIs generated from MATLAB functions. All MATLAB code packaged for use in
these applications must be written as a MATLAB function.

Packaged Applications Do Not Process MATLAB Files at Run Time
The compiler secures your code against unauthorized changes. Deployable MATLAB files are
suspended or frozen at the time of compilation. This does not mean that you cannot deploy a flexible
application—it means that you must design your application with flexibility in mind. If you want the
end user to be able to choose between two different methods, for example, both methods must be
available in the deployable archive.

The MATLAB Runtime only works on MATLAB code that was encrypted when the deployable archive
was built. Any function or process that dynamically generates new MATLAB code will not work
against the MATLAB Runtime.

Some MATLAB toolboxes, such as the Deep Learning Toolbox™ product, generate MATLAB code
dynamically. Because the MATLAB Runtime only executes encrypted MATLAB files, and the Deep
Learning Toolbox generates unencrypted MATLAB files, some functions in the Deep Learning Toolbox
cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function file cannot be deployed.
HELP, for example, is dynamic and not available in deployed mode. You can use LOADLIBRARY in
deployed mode if you provide it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and attempting to deploy it,
perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.
2 Package the MATLAB code, including the generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

2 Write Deployable MATLAB Code

2-2

If you require the ability to create MATLAB code for dynamic run-time processing, your end users
must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files
In general, good programming practices advise against redirecting a program search path
dynamically within the code. Many developers are prone to this behavior since it mimics the actions
they usually perform on the command line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and cannot change.
Therefore, any attempt to change these paths (using the cd command or the addpath command)
fails.

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 2-
3 for details.

Use isdeployed Functions To Execute Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB code is deployable,
and which is not. Such specification minimizes your compilation errors and helps create more
efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your startup.m. Using ismcc
and isdeployed, you specify when and what is packaged and executed.

Gradually Refactor Applications That Depend on Noncompilable
Functions
Over time, refactor, streamline, and modularize MATLAB code containing non-compilable or non-
deployable functions that use isdeployed. Your eventual goal is “graceful degradation” of non-
deployable code. In other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes through a phase of
perpetual rewriting, debugging, and optimization. In some toolboxes, such as the Deep Learning
Toolbox product, the code goes through a period of self-training as it reacts to various data
permutations and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a finished state and is
ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for code that calls
undeployable code.

Do Not Create or Use Nonconstant Static State Variables
Avoid using the following:

 Write Deployable MATLAB Code

2-3

• Global variables in MATLAB code
• Static variables in MEX-files
• Static variables in Java code

The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because the MATLAB
Runtime process runs in a single thread. You cannot load more than one of these non-constant, static
variables into the same process. In addition, these static variables do not work well in multithreaded
applications.

When programming against packaged MATLAB code, you should be aware that an instance of the
MATLAB Runtime is created for each instance of a new class. If the same class is instantiated again
using a different variable name, it is attached to the MATLAB Runtime created by the previous
instance of the same class. In short, if an assembly contains n unique classes, there will be maximum
of n instances of MATLAB Runtime created, each corresponding to one or more instances of one of
the classes.

If you must use static variables, bind them to instances. For example, defining instance variables in a
Java class is preferable to defining the variable as static.

Get Proper Licenses for Toolbox Functionality You Want to Deploy
You must have a valid MathWorks® license for toolboxes you use to create deployable MATLAB code.

See Also
isdeployed | ismcc

More About
• MATLAB Compiler support for MATLAB and toolboxes

2 Write Deployable MATLAB Code

2-4

https://www.mathworks.com/products/compiler/supported/compiler_support.html

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data value in a program or
program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited to:

• Modifying or relying on the MATLAB path and the Java class path
• Accessing MATLAB state that is inherently persistent or global. Some example of this include:

• Random number seeds
• Handle Graphics® root objects that retain data
• MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.
• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a MATLAB object in any

way, it loads into MATLAB.
• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your function to properly execute,
you must take additional steps (listed in this section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and safeguard against that
state’s corruption if needed. Assume that your state may be changed and code defensively against
that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application

If you are using a random number seed, for example, reset it in your deployed application program to
ensure the integrity of your original MATLAB function.

Validate Global or Persistent Variable Values

If you must use global or persistent variables, always validate their value in your deployed application
and reset if needed.

Ensure Access to Data Caches

If your function relies on cached replies to previous requests, for instance, ensure your deployed
system and application has access to that cache outside of the MATLAB environment.

Use Simple Data Types When Possible

Simple data types are usually not tied to a specific application and means of storing state. Your
options for choosing an appropriate state-preserving tool increase as your data types become less
complicated and specific.

 State-Dependent Functions

2-5

Avoid Using MATLAB Callback Functions

Avoid using MATLAB callbacks, such as timer. Callback functions have the ability to interrupt and
override the current state of the MATLAB Production Server worker and may yield unpredictable
results in multiuser environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the type of data you need to
save.

• Databases provide the most versatile and scalable means for retaining stateful data. The database
acts as a generic repository and can generally work with any application in an enterprise
development environment. It does not impose requirements or restrictions on the data structure
or layout. Another related technique is to use comma-delimited files, in applications such as
Microsoft® Excel.

• Data that is specific to a third-party programming language, such as Java and C#, can be retained
using a number of techniques. Consult the online documentation for the appropriate third-party
vendor for best practices on preserving state.

Caution Using MATLAB LOAD and SAVE functions is often used to preserve state in MATLAB
applications and workspaces. While this may be successful in some circumstances, it is highly
recommended that the data be validated and reset if needed, if not stored in a generic repository
such as a database.

2 Write Deployable MATLAB Code

2-6

Calling Shared Libraries in Deployed Applications
The loadlibrary function in MATLAB allows you to load shared library into MATLAB.

Loading libraries using header files is not supported in compiled applications. Therefore, to create an
application that uses the loadlibrary function with a header file, follow these steps:

1 Create a prototype MATLAB file. Suppose that you call loadlibrary with the following syntax.

loadlibrary(library, header)

Run the following command in MATLAB only once to create the prototype file:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

This creates mylibrarymfile.m in the current folder. If you are on Windows®, another file
named library_thunk_pcwin64.dll is also created in the current folder.

2 Change the call to loadlibrary in your MATLAB to the following:

loadlibrary(library, @mylibrarymfile)
3 Compile and deploy the application.

• If you are integrating the library into a deployed application, specify the library’s .dll along
with library_thunk_pcwin64.dll, if created, using the -a option of mcc command. If you
are using Application Compiler or Library Compiler apps, add the .dll files to the Files
required for your application to run section of the app.

• If you are providing the library as an external file that is not integrated with the deployed
application, place the library .dll file in the same folder as the compiled application. If you
are on Windows, you must integrate library_thunk_pcwin64.dll into your compiled
application.

The benefit of this approach is that you can replace the library with an updated version
without recompiling the deployed application. Replacing the library with a different version
works only if the function signatures of the function in the library are not altered. This is
because mylibrarymfile.m and library_thunk_pcwin64.dll are tied to the function
signatures of the functions in the library.

Note You cannot use loadlibrary inside MATLAB to load a shared library built with MATLAB. For
more information on loadlibrary, see “Limitations to Shared Library Support” (MATLAB).

Note Operating systems have a loadlibrary function, which loads specified Windows operating
system module into the address space of the calling process.

See Also
loadlibrary

Related Examples
• “Call C Functions in Shared Libraries” (MATLAB)

 Calling Shared Libraries in Deployed Applications

2-7

MATLAB Data Files in Compiled Applications
In this section...
“Explicitly Including MATLAB Data files Using the %#function Pragma” on page 2-8
“Load and Save Functions” on page 2-8

Explicitly Including MATLAB Data files Using the %#function Pragma
The compiler excludes MATLAB data files (MAT-files) from dependency analysis by default. See
“Dependency Analysis” on page 1-4.

If you want the compiler to explicitly inspect data within a MAT file, you need to specify the
%#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Deep Learning Toolbox, you need to use the
%#function pragma within your code to include a dependency on the gmdistribution class, for
instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful to code LOAD and SAVE
functions to manipulate the data and store it for later processing.

• Use isdeployed to determine if your code is running in or out of the MATLAB workspace.
• Specify the data file by either using WHICH (to locate its full path name) define it relative to the

location of ctfroot.
• All MAT-files are unchanged after mcc runs. These files are not encrypted when written to the

deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 1-5.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside, and outside, of
MATLAB.

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

• user_data.mat
• userdata\extra_data.mat
• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.
2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
 '.\userdata\extra_data.mat' -a
 '..\externdata\extern_data.mat'

2 Write Deployable MATLAB Code

2-8

ex_loadsave.m
function ex_loadsave
% This example shows how to work with the
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
% user_data.mat
% userdata\extra_data.mat
% ..\externdata\extern_data.mat
%
% Compile this example with the mcc command:
% mcc -m ex_loadsave.m -a 'user_data.mat' -a
% '.\userdata\extra_data.mat'
% -a '..\externdata\extern_data.mat'
% All the folders under the current main MATLAB file directory will
% be included as
% relative path to ctfroot; All other folders will have the
% folder
% structure included in the deployable archive file from root of the
% disk drive.
%
% If a data file is outside of the main MATLAB file path,
% the absolute path will be
% included in deployable archive and extracted under ctfroot. For example:
% Data file
% "c:\$matlabroot\examples\externdata\extern_data.mat"
% will be added into deployable archive and extracted to
% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
%
% All mat/data files are unchanged after mcc runs. There is
% no encryption on these user included data files. They are
% included in the deployable archive.
%
% The target data file is:
% .\output\saved_data.mat
% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

%==== load data file =============================
if isdeployed
 % In deployed mode, all file under CTFRoot in the path are loaded
 % by full path name or relative to $ctfroot.
 % LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));
 % LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
 LOADFILENAME1=which(fullfile('user_data.mat'));
 LOADFILENAME2=which(fullfile('extra_data.mat'));
 % For external data file, full path will be added into deployable archive;
 % you don't need specify the full path to find the file.
 LOADFILENAME3=which(fullfile('extern_data.mat'));
else
 %running the code in MATLAB
 LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','user_data.mat');
 LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','userdata','extra_data.mat');
 LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',
 'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

 MATLAB Data Files in Compiled Applications

2-9

% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = data1*data2;
disp('A * B = ');
disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if (~isdir(SAVEPATH))
 mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');
disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result');

2 Write Deployable MATLAB Code

2-10

Share MATLAB Runtime Instances
In this section...
“What Is a Singleton MATLAB Runtime?” on page 2-11
“Advantages and Disadvantages of Using a Singleton” on page 2-11

What Is a Singleton MATLAB Runtime?
You create an instance of the MATLAB Runtime that can be shared among all subsequent class
instances within a component. This is commonly called a shared MATLAB Runtime instance or a
Singleton runtime.

Advantages and Disadvantages of Using a Singleton
In most cases, a singleton MATLAB Runtime will provide many more advantages than disadvantages.
Following are examples of when you might and might not create a shared MATLAB Runtime instance.

When You Should Use a Singleton

If you have multiple users running from a specific instance of MATLAB, using a singleton will most
likely:

• Utilize system memory more efficiently
• Decrease MATLAB Runtime start-up or initialization time

When You Might Avoid Using a Singleton

Using a singleton may not benefit you if your application uses a large number of global variables. This
causes crosstalk.

 Share MATLAB Runtime Instances

2-11

Package a C/C++ Shared Library

• “Install an ANSI C or C++ Compiler” on page 3-2
• “Create a C Shared Library with MATLAB Code” on page 3-4
• “Create C/C++ Shared Libraries from Command Line” on page 3-9
• “Distribute C/C++ Shared Libraries to Application Developers” on page 3-11

3

Install an ANSI C or C++ Compiler
Install supported ANSI® C or C++ compiler on your system. Certain output targets require particular
compilers.

To install your ANSI C or C++ compiler, follow vendor instructions that accompany your C or C++
compiler.

Note If you encounter problems relating to the installation or use of your ANSI C or C++ compiler,
consult your C or C++ compiler vendor.

Supported ANSI C and C++ Windows Compilers
Use one of the following C/C++ compilers that create Windows dynamically linked libraries (DLLs) or
Windows applications:

• Microsoft Visual C++® (MSVC).

• The only compiler that supports the building of COM objects and Excel plug-ins is Microsoft
Visual C++.

• The only compiler that supports the building of .NET objects is Microsoft Visual C# Compiler
for the Microsoft .NET Framework.

• Microsoft Windows SDK 7.1

Note For an up-to-date list of all the compilers supported by MATLAB, see the MathWorks Technical
Support notes at https://www.mathworks.com/support/compilers/current_release/

Supported ANSI C and C++ UNIX Compilers
MATLAB Compiler and MATLAB Compiler SDK support the native system compilers on:

• Linux®

• Linux x86-64
• Mac OS X

MATLAB Compiler and MATLAB Compiler SDK supports gcc and g++.

Common Installation Issues and Parameters
When you install your C or C++ compiler, you sometimes encounter requests for additional
parameters. The following tables provide information about common issues occurring on Windows
and UNIX® systems where you sometimes need additional input or consideration.

3 Package a C/C++ Shared Library

3-2

https://www.mathworks.com/support/compilers.html

Windows Operating System

Issue Comment
Installation options (Recommended) Full installation.
Installing debugger files For the purposes of MATLAB Compiler and

MATLAB Compiler sdk, it is not necessary to
install debugger (DBG) files.

Microsoft Foundation Classes (MFC) Not needed.
16-bit DLLs Not needed.
ActiveX® Not needed.
Running from the command line Make sure that you select all relevant options for

running your compiler from the command line.
Updating the registry If your installer gives you the option of updating

the registry, perform this update.
Installing Microsoft Visual C++ Version 6.0 To change the install location of the compiler,

change the location of the Common folder. Do not
change the location of the VC98 folder from its
default setting.

UNIX Operating System

Issue Comment
Determine which C or C++ compiler is available
on your system.

See your system administrator.

Determine the path to your C or C++ compiler. See your system administrator.
Installing on Maci64 Install X code from installation DVD.

 Install an ANSI C or C++ Compiler

3-3

Create a C Shared Library with MATLAB Code
Supported platform: Windows, Linux, Mac

This example shows how to create a C shared library using a MATLAB function. You can then pass the
generated package to the developer who is responsible for integrating it into an application. The
target system does not require a licensed copy of MATLAB.

Create Functions in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
addmatrix.m, multiplymatrix.m, and eigmatrix.m located in matlabroot\extern\examples
\compilersdk\c_cpp\matrix.

addmatrix.m

function a = addmatrix(a1, a2)

a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

multiplymatrix.m

function m = multiplymatrix(a1, a2)

m = a1*a2;

At the MATLAB command prompt, enter multiplymatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7;
2 5 8; 3 6 9]).

The output is:

 ans =
 30 66 102
 36 81 126
 42 96 150

eigmatrix.m

function e = eigmatrix(a1)

 try
 %Tries to calculate the eigenvalues and return them.
 e = eig(a1);
 catch
 %Returns a -1 on error.
 e = -1;
end

3 Package a C/C++ Shared Library

3-4

At the MATLAB command prompt, enter eigmatrix([1 4 7; 2 5 8; 3 6 9]).

The output is:

 ans =
 16.1168
 -1.1168
 -0.0000

Create a C Shared Library Using the Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler. In the MATLAB Compiler project window, click C
Shared Library.

Alternately, you can open the Library Compiler app by entering libraryCompiler at the
MATLAB prompt.

2 In the MATLAB Compiler project window, specify the files of the MATLAB application that you
want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

Add all three functions to the list of main files.
3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB

Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer or obtain a CD if you do not have Internet access.

 Create a C Shared Library with MATLAB Code

3-5

4 In the Library Name field, rename the packaged shared library as libmatrix. The same name
is followed through in the implementation of the shared library.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information about the
application as follows:

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer”.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project”.

• Files installed for your end user — Files that are installed with your application. These files
include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

3 Package a C/C++ Shared Library

3-6

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

See Also
deploytool | libraryCompiler | mcc

Related Examples
• “Create C/C++ Shared Libraries from Command Line” on page 3-9

 Create a C Shared Library with MATLAB Code

3-7

• “Implement a C Shared Library with a Driver Application”

3 Package a C/C++ Shared Library

3-8

Create C/C++ Shared Libraries from Command Line

In this section...
“Execute Compiler Projects with deploytool” on page 3-9
“Package a Shared Library with mcc” on page 3-9
“Differences Between Compiler Apps and Command Line” on page 3-10

You can package C/C++ applications at the MATLAB prompt or your system prompt using either of
these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Package a Shared Library with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the command
prompt and provides fine-level control while packaging the application. It does not package the
results in an installer.

To invoke the compiler to generate a library, use the -l flag with mcc. The -l flag creates a C/C++
shared library that you can integrate into applications developed in C or C++.

Use the following mcc options to package a shared library.

Option Description
-W lib:libname -T link:lib Generate a C shared library. Equivalent to using -

l.

The -W lib:<libname> option tells the
compiler to generate a function wrapper for a
shared library and call it libname. The -T
link:lib option specifies the target output as a
shared library. Note the directory where the
product puts the shared library because you will
need it later on.

 Create C/C++ Shared Libraries from Command Line

3-9

Option Description
-W cpplib:libname -T link:lib Generate a C++ shared library.

The -W lib:<libname> option tells the
compiler to generate a function wrapper for a
shared library and call it libname. The -T
link:lib option specifies the target output as a
shared library. Note the directory where the
product puts the shared library because you will
need it later on.

-a filePath Add the file or files on the path to the generated
binary.

-d outFolder Specify the folder for the packaged applications.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are
customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Create a C Shared Library with MATLAB Code”
• “Implement a C Shared Library with a Driver Application”

3 Package a C/C++ Shared Library

3-10

Distribute C/C++ Shared Libraries to Application Developers
Distribute the following to the application developer integrating the shared library:

• Function signatures of the deployed MATLAB functions
• Generated shared library and header file
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts required for
distributing a shared library. The installer is located in the for_redistribution folder of the
compiler project.

 Distribute C/C++ Shared Libraries to Application Developers

3-11

Package a .NET Assembly

• “Generate a .NET Assembly and Build a .NET Application” on page 4-2
• “Package .NET Assemblies from Command Line” on page 4-7
• “Distribute .NET Assemblies to Application Developers” on page 4-10

4

Generate a .NET Assembly and Build a .NET Application
Supported platform: Windows

This example shows how to use the Library Compiler app to create a .NET Assembly for a MATLAB
function. You can then pass the generated package to the developer who is responsible for
integrating it into an application. This example also shows how to call the .NET assembly from a .NET
application. The target system does not require a licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
makesquare.m located in matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\NET
\MagicSquareExample\MagicSquareComp.

makesquare.m

function y = makesquare(x)

y = magic(x);

At the MATLAB command prompt, enter makesquare(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create .NET Assembly Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt by
entering:

libraryCompiler

4 Package a .NET Assembly

4-2

2 In the Type section of the toolstrip, click .NET Assembly.

In the MATLAB Compiler project window, specify the files of the MATLAB application that you
want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

For this example, navigate to matlabroot\toolbox\dotnetbuilder\Examples\VSVersion
\NET\MagicSquareExample\MagicSquareComp and select makesquare.m.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer or obtain a CD if you do not have Internet access.

Specify Assembly File Settings
1 The Library Name field is automatically populated with makesquare as the name of the

assembly. Rename it as MagicSquareComp. The same name is followed through in the
implementation of the assembly.

2 Verify that the function defined in makesquare.m is mapped into Class1.

3 Add MATLAB files to generate the sample .NET driver files. Although .NET driver files are not
necessary to create an assembly, they are used to demonstrate how to “Build a .NET
Application”.

In the Samples section, select Create New Sample, and click makesquare.m. A MATLAB file
opens for you to edit. Define the input variables as necessary for your application, save the file,
and return to the Library Compiler app. For more information and limitations, see “Sample
Driver File Creation”.

 Generate a .NET Assembly and Build a .NET Application

4-3

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information about the
application as follows:

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer”.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project”.

• Files installed for your end user — Files that are installed with your application. These files
include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

• Additional runtime settings — Platform-specific options for controlling the generated
executable. See “Additional Runtime Settings”.

4 Package a .NET Assembly

4-4

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

 Generate a .NET Assembly and Build a .NET Application

4-5

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Build a .NET Application
After creating your .NET assembly file, you can call it from a .NET application. The .NET application
that you create uses the sample .NET driver code generated during packaging. The .NET driver code
calls the .NET assembly file, and it is based on the sample MATLAB file you selected in previous setup
steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install and
Configure the MATLAB Runtime” (MATLAB Compiler), and that you have Microsoft Visual Studio®

installed.

1 Install the .NET assembly from the for_redistribution folder.

The generated shared libraries and support files are located in the for_testing folder.
2 Open Microsoft Visual Studio and create a project. For this example, create a C# Console

Application called MainApp, and create a reference to your assembly file
MagicSquareComp.dll.

Ensure that the assembly is located in the application folder created where you installed the
component.

3 Create a reference to the MWArray API. The location of the API within MATLAB Runtime is:

matlabroot\MATLAB Runtime\v98\toolbox\dotnetbuilder\bin\arch\version
\MWArray.dll

4 Go to Build > Configuration Manager, and change the platform from Any CPU to x64.
5 Copy the generated sample .NET driver code makesquareSample1.cs from the

for_redistribution_files_only\samples folder into the project, and save it.
6 After you finish writing your code, build and run it with Microsoft Visual Studio.

See Also
deploytool | libraryCompiler | mcc

More About
• “Integrate a .NET Assembly Into a C# Application”

4 Package a .NET Assembly

4-6

Package .NET Assemblies from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 4-7
“Create .NET Assemblies with mcc” on page 4-7
“Differences Between Compiler Apps and Command Line” on page 4-8

You can package .NET assemblies at the MATLAB prompt or your system prompt using either of these
commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Create .NET Assemblies with mcc
The mcc command invokes MATLAB Compiler to create a .NET assembly at the command prompt and
provides fine-level control while packaging the application. It does not package the results in an
installer.

The following command defines the complete mcc command syntax with all required and optional
arguments used to create a .NET assembly. Brackets indicate optional parts of the syntax.

mcc -W 'dotnet:component_name,class_name, 0.0|framework_version, Private|
Encryption_Key_Path,local|remote' file1 [file2...fileN][class{class_name:file1
[,file2,...,fileN]},... [-d output_dir_path] -T link:lib

.NET Bundle

You can simplify the command line used to create .NET assemblies. To do so, use the bundle named
dotnet. Using this bundle still requires that you pass in the five parts (including local|remote) of
the -W argument text string; however, you do not have to specify the -T option.

The following example creates a .NET assembly called mycomponent containing a single .NET class
named myclass with methods foo and bar.

mcc -B 'dotnet:mycomponent,myclass,2.0,
 encryption_keyfile_path,local'
 foo.m bar.m

 Package .NET Assemblies from Command Line

4-7

In this example, the compiler uses the .NET Framework version 2.0 to package the component into a
shared assembly using the key file specified in encryption_keyfile_path to sign the shared
component.

Creating a .NET Namespace

The following example creates a .NET assembly from two MATLAB files foo.m and bar.m.

mcc -B
'dotnet:mycompany.mygroup.mycomponent,myclass,0.0,Private,local'
 foo.m bar.m

The example creates a .NET assembly named mycomponent that has the following namespace:
mycompany.mygroup. The component contains a single .NET class myclass, which contains
methods foo and bar.

To use myclass, place the following statement in your code:

using mycompany.mygroup;

Adding Multiple Classes to an Assembly

The following example creates a .NET assembly that includes more than one class. This example uses
the optional class{...} argument to the mcc command.
mcc -B 'dotnet:mycompany.mycomponent,myclass,2.0,Private,local' foo.m bar.m
class{myclass2:foo2.m,bar2.m}

The example creates a .NET assembly named mycomponent with two classes:

• myclass has methods foo and bar
• myclass2 has methods foo2 and bar2

See NET.isNETSupported to check for a supported version of Microsoft .NET framework.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are
customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

4 Package a .NET Assembly

4-8

See Also
deploytool | mcc

More About
• “Generate a .NET Assembly and Build a .NET Application”

 Package .NET Assemblies from Command Line

4-9

Distribute .NET Assemblies to Application Developers
Distribute the following to the application developer integrating the .NET assembly:

• Function signatures of the deployed MATLAB functions
• assemblyName.xml — generated documentation files
• assemblyName.dll — generated assembly file
• assemblyName.pdb — optionally generated program database file containing debugging

information
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts required for
distributing a .NET assembly. The installer is located in the for_redistribution folder of the
compiler project.

4 Package a .NET Assembly

4-10

Package a Java Application

• “Configure Your Java Environment” on page 5-2
• “Generate a Java Package and Build a Java Application” on page 5-4
• “Package Java Applications from Command Line” on page 5-10
• “Map Functions to Java Class Methods” on page 5-12
• “Distribute Java Applications to Application Developers” on page 5-14

5

Configure Your Java Environment

In this section...
“Install the Required JDK” on page 5-2
“Set JAVA_HOME” on page 5-2
“Set the CLASSPATH” on page 5-3
“Configure the Native Library Path Variables” on page 5-3

Before you can package MATLAB functions into Java applications or use the generated Java
application in a Java development environment, you must ensure that your Java environment is
properly configured. You should verify that:

• Your system uses a version of the Java Developer’s Kit (JDK™) that is compatible with MATLAB.
• JAVA_HOME is set to the folder containing the system’s JDK installation.
• CLASSPATH contains all of the MATLAB library JAR files and the JAR files for the applications

containing your packaged MATLAB code.
• The MATLAB native library paths are properly configured.

Note For updated Java system requirements, including versions of Java Developer's Kit (JDK) and
Java Runtime Environment (JRE), see the supported compiler page at https://www.mathworks.com/
support/compilers/current_release/.

Install the Required JDK
To install the proper version of the JDK:

1 Verify the version of Java your MATLAB installation is using by running the following MATLAB
command:

version -java
2 Download a Java Developer's Kit (JDK) with the same major version from https://

adoptopenjdk.net/.
3 Install the JDK.

Note If you are not developing applications or compiling MATLAB code, you can use the Java
Runtime Environment (JRE) instead of the JDK.

Set JAVA_HOME
1 Set the system environment variable, JAVA_HOME, to point to your JDK installation.
2 At the MATLAB command prompt, type getenv JAVA_HOME to verify that MATLAB is reading

the correct version of JAVA_HOME.
3 Verify that the folder containing your Java installation has been added to your system PATH

environment variable.

5 Package a Java Application

5-2

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html
https://adoptopenjdk.net/
https://adoptopenjdk.net/

Set the CLASSPATH
To build and run a Java application that uses a MATLAB Compiler SDK generated package, the
system must locate:

• JAR files containing the MATLAB libraries
• Applications that you have developed and built with the compiler

Java classes generated by the MATLAB Compiler SDK software use classes contained in the
com.mathworks.toolbox.javabuilder package. To use the compiled classes, you should include
a file called javabuilder.jar on the Java class path. You can find this file in one of the following
folders:

MATLAB installed on your system matlabroot/toolbox/javabuilder/jar
MATLAB Runtime installed on your system mcrroot/toolbox/javabuilder/jar

Note matlabroot refers to the root folder into which the MATLAB installer has placed the MATLAB
files. mcrroot refers to the root folder under which MATLAB Runtime is installed.

In addition, you should add to the JAR files created by the compiler to the class path.

Configure the Native Library Path Variables
The operating system uses the native library path to locate native libraries that are needed to run
your Java class. See the following list of variable names according to operating system:

Windows PATH
Linux LD_LIBRARY_PATH
Macintosh DYLD_LIBRARY_PATH

The native MATLAB or MATLAB Runtime files needed to execute the packaged MATLAB functions
called from the Java code must be included on the paths listed by your system’s native library path
variable.

 Configure Your Java Environment

5-3

Generate a Java Package and Build a Java Application
Supported platform: Windows, Linux, Mac

This example shows how to use the Library Compiler app to create a Java package for a MATLAB
function. You can then pass the generated package to the developer who is responsible for
integrating it into an application. This example also shows how to call the Java package from a Java
application. The target system does not require a licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open makesqr.m
located in matlabroot\toolbox\javabuilder\Examples\MagicSquareExample
\MagicDemoComp.

makesqr.m

function y = makesqr(x)

y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Java Application Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt by
entering:

libraryCompiler

2 In the Type section of the toolstrip, click Java Package.

In the MATLAB Compiler project window, specify the files of the MATLAB application that you
want to deploy.

5 Package a Java Application

5-4

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

For this example, navigate to matlabroot\toolbox\javabuilder\Examples
\MagicSquareExample\MagicDemoComp and select makesqr.m.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer or obtain a CD if you do not have Internet access.

Specify Package Settings
1 The Library Name field is automatically populated with makesqr as the name of the package.

The same name is followed through in the implementation of the package.
2 Verify that the function defined in makesqr.m is mapped into Class1.

3 Add MATLAB files to generate the sample Java driver files. Although Java driver files are not
necessary to create packages, they are used to demonstrate how to “Install and Implement
MATLAB Generated Java Application”.

In the Samples section, select Create New Sample, and click makesqr.m. A MATLAB file opens
for you to edit. Define the input variables as necessary for your application, save the file, and
return to the Library Compiler app. For more information and limitations, see “Sample Driver
File Creation”.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information about the
application as follows:

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated

 Generate a Java Package and Build a Java Application

5-5

installer uses this information to populate the installed application metadata. See “Customize the
Installer”.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project”.

• Files installed for your end user — Files that are installed with your application. These files
include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

5 Package a Java Application

5-6

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

 Generate a Java Package and Build a Java Application

5-7

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Install and Implement MATLAB Generated Java Application
After creating your Java packages, you can call them from a Java application. The Java application
that you create uses the sample Java driver code generated during packaging. The Java driver code
calls the Java packages, and it is based on the sample MATLAB file you selected in previous setup
steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install and
Configure the MATLAB Runtime” (MATLAB Compiler), and that you have the Java Development Kit
installed.

1 Copy and paste the generated Java driver code file from the
for_redistribution_files_only\samples folder into the
for_redistribution_files_only folder created when you created the package.

2 Use the system command line to navigate to the for_redistribution_files_only folder,
where you copied the generated sample Java driver code file.

3 Compile the application using javac at the system command prompt.

javac -classpath "mcrroot\toolbox\javabuilder\jar\platform\javabuilder.jar";.\makesqr.jar .\getmagic.java

Note On UNIX platforms, use colon (:) as the class path delimiter instead of semicolon (;).

mcrroot is the path to the MATLAB Runtime installation on your system. If you have MATLAB
installed on your system instead, you can use the path to your MATLAB installation.

4 From the system command prompt, run the application. If you used sample MATLAB code in the
packaging steps, this application should return the same output as the MATLAB code.

java -classpath .;"mcrroot\toolbox\javabuilder\jar\platform\javabuilder.jar";.\makesqr.jar makesqrSample1

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Place a dot (.) in the first position of the class path. If it is not there, you get a message stating
that Java cannot load the class.

Note On UNIX platforms, use colon (:) as the class path delimiter instead of semicolon (;).

5 Package a Java Application

5-8

See Also
deploytool | libraryCompiler | mcc

 Generate a Java Package and Build a Java Application

5-9

Package Java Applications from Command Line

In this section...
“Execute Compiler Projects with deploytool” on page 5-10
“Package a Java Application with mcc” on page 5-10
“Differences Between Compiler Apps and Command Line” on page 5-11

You can package Java applications at the MATLAB prompt or your system prompt using either of
these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Package a Java Application with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the command
prompt and provides fine-level control while packaging the application. It does not package the
results in an installer.

To invoke the compiler to generate a Java application, use the -W java:packageName,className
flag with mcc. This flag creates a Java application named packageName. The application contains a
class className with methods for each of the provided MATLAB functions.

Package Java applications using the following options.

Option Description
-a filePath Add any files on the path to the generated binary.
-d outFolder Specify the folder into which the results of

packaging are written.
-S Specify that the generated classes instantiate a

singleton MATLAB Runtime.
class{className:mfilename...} Specify that an additional class is generated that

includes methods for the listed MATLAB files.

5 Package a Java Application

5-10

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are
customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Generate a Java Package and Build a Java Application”

 Package Java Applications from Command Line

5-11

Map Functions to Java Class Methods

In this section...
“Map Functions to Java Classes with the Library Compiler App” on page 5-12
“Map Functions to Java Classes with mcc” on page 5-13

Map Functions to Java Classes with the Library Compiler App
The Library Compiler app presents a visual class mapper for mapping MATLAB functions to Java
classes. The class mapper is located between the Application Information and the Additional
Installer Options sections of the app.

The Namespace field at the top of the class browser specifies the name of the application into which
the generated classes are placed. By default, the name of the first listed MATLAB file is used as the
application name. You can change the application name to fit the naming conventions used by your
organization.

The table used to match functions to classes is below the application name. The Class Name column
specifies the name of the generated Java class. The Method Name column specifies the list of
MATLAB functions that are mapped into methods of the generated class.

Add a New Class to a Java Application

To add a class to a Java application:

1 Click Add Class.
2 Rename the class as described in “Rename a Java Class” on page 5-12.
3 Add one or more methods to the class as described in “Add a Method to a Java Class” on page 5-

13.

Rename a Java Class

To rename a Java class:

1 Select the name of the class to be renamed.
2 Open the context menu.
3 Select Rename.
4 Enter the new class name.

The class name must follow the Java naming guidelines. It cannot contain any special characters,
dots, or spaces.

5 Package a Java Application

5-12

Delete a Class from a JavaApplication

To delete a class from a Java application:

1 Select the name of the class to be deleted.
2 Open the context menu.
3 Select Delete.

Add a Method to a Java Class

To add a method to a Java class:

1 In the Method Name column of the row for the class to which the method is being added, click
the plus button.

2 Select the name of the function to add.

Delete a Method from a Java Class

To delete a method from a Java class:

1 Select the name of the function to be deleted.
2 Open the context menu.
3 Select Delete.

Tip You can also delete the method using the Delete key.

Map Functions to Java Classes with mcc
When using mcc to generate Java applications, you map your MATLAB functions into Java classes
based on the list into which they are placed on the command line. Class groupings are specified by
adding one or more class{className:mfilename...} entries to the command line. All of the files
not included in a class grouping are added to the class specified by the -W
java:packageName,className flag.

For example, mcc —W java:myPackage,MyClass fun1.m fun2.m fun3.m generates a Java
application myPackage that contains a single class MyClass. MyClass has three methods: fun1,
fun2, and fun3.

However, mcc —W java:myPackage,MyClass fun1.m fun2.m class{MyOtherClass:fun3.m}
generates a Java application myPackage that contains two classes: MyClass and MyOtherClass.
MyClass has two methods: fun1 and fun2. MyOtherClass has one method fun3.

 Map Functions to Java Class Methods

5-13

Distribute Java Applications to Application Developers
Distribute the following to the application developer integrating the application:

• Function signatures of the deployed MATLAB functions
• Generated application
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts required for
distributing a Java application. The installer is located in the for_redistribution folder of the
compiler project.

5 Package a Java Application

5-14

Package a Python Application

• “Generate a Python Package and Build a Python Application” on page 6-2
• “Package Python Applications from Command Line” on page 6-6
• “Distribute Python Applications to Application Developers” on page 6-8

6

Generate a Python Package and Build a Python Application
Supported platform: Windows, Linux, Mac

This example shows how to use the Library Compiler app to create a Python package that uses a
MATLAB function. You can then pass the generated package to the developer who is responsible for
integrating it into an application. This example also shows how to call the Python package from a
Python application. The target system does not require a licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, write a function
makesqr.m as follows:

function y = makesqr(x)

y = magic(x);

At the MATLAB command prompt, enter makesqr(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Python Application Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler.

Alternatively, you can open the Library Compiler app from the MATLAB command prompt by
entering:

libraryCompiler

2 In the Type section of the toolstrip, click Python Package.

6 Package a Python Application

6-2

In the MATLAB Compiler project window, specify the files of the MATLAB application that you
want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

For this example, select the makesqr.m file that you wrote earlier.
3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB

Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer or obtain a CD if you do not have Internet access.

Specify Package Settings
1 The Library Name field is automatically populated with makesqr as the name of the package.

Rename it as MagicSquarePkg. For more information on naming requirements for the Python
package, see “Import Compiled Python Packages”.

2 Add MATLAB files to generate the sample Python driver files. Although Python driver files are not
necessary to create packages, they are used to demonstrate how to “Install and Run MATLAB
Generated Python Application”.

In the Samples section, select Create New Sample, and click makesqr.m. A MATLAB file opens
for you to edit. Define the input variables as necessary for your application, save the file, and
return to the Library Compiler app. For more information and limitations, see “Sample Driver
File Creation”.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information about the
application as follows:

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer”.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path”.

 Generate a Python Package and Build a Python Application

6-3

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project”.

• Files installed for your end user — Files that are installed with your application. These files
include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

6 Package a Python Application

6-4

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Install and Run MATLAB Generated Python Application
After creating your Python packages, you can call them from a Python application. The Python
application that you create uses the sample Python driver code generated during packaging. The
Python driver code calls the Python packages, and it is based on the sample MATLAB file you selected
in previous setup steps.

These steps are also explained in the GettingStarted.html file in
for_redistribution_files_only folder. Before starting, make sure that you “Install and
Configure the MATLAB Runtime” (MATLAB Compiler), and that you have Python installed.

1 Copy and paste the generated Python driver code file from the
for_redistribution_files_only\samples folder into the
for_redistribution_files_only folder created when you created the shared library.

2 Use the system command line to navigate to the for_redistribution_files_only folder,
where you copied the generated sample Python driver code file.

3 Install the application using python at the system command prompt.

python setup.py install
4 From the system command prompt, run the application. If you used sample MATLAB code in the

packaging steps, this application should return the same output as the MATLAB code.

python makesqrSample1.py

[[8.0,1.0,6.0],
[3.0,5.0,7.0],
[4.0,9.0,2.0]]

Note On Mac OS X, you must use the mwpython script. The mwpython script is located in the
matlabroot/bin folder. matlabroot is the location of your MATLAB installation.

For example, mwpython makesqrSample1.py

See Also
deploytool | libraryCompiler | mcc | mwpython

 Generate a Python Package and Build a Python Application

6-5

Package Python Applications from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 6-6
“Package a Python Application with mcc” on page 6-6
“Differences Between Compiler Apps and Command Line” on page 6-6

Note MATLAB Compiler SDK cannot package MATLAB code that uses the MATLAB Python interface.

You can package Python applications at the MATLAB prompt or your system prompt using either of
these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Package a Python Application with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the command
prompt and provides fine-level control while packaging the application. It does not package the
results in an installer.

To invoke the compiler to generate a Python application, use the -W
python:namespace.packageName flag with mcc. This flag creates a Python package named
packageName with methods for each of the provided MATLAB functions.

For packaging Python applications, you can also use the following options.

Option Description
-a filePath Add any files on the path to the generated binary.
-d outFolder Specify the folder into which the results of

packaging are written.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are

6 Package a Python Application

6-6

customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Generate a Python Package and Build a Python Application”

 Package Python Applications from Command Line

6-7

Distribute Python Applications to Application Developers
Distribute the following to the application developer integrating the application:

• Function signatures of the deployed MATLAB functions
• Generated application
• Generated setup.py
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all the binary artifacts required for
distributing a Python application. The installer is located in the for_redistribution folder of the
compiler project.

6 Package a Python Application

6-8

Compile a Deployable Archive for
MATLAB Production Server

• “Package Deployable Archives with Production Server Compiler App” on page 7-2
• “Package Deployable Archives from Command Line” on page 7-5
• “Build Excel Add-In and Deployable Archive” on page 7-7

7

Package Deployable Archives with Production Server Compiler
App

Supported platform: Windows, Linux, Mac

This example shows how to create a deployable archive from a MATLAB function. You can then hand
the generated archive to a system administrator who will deploy it into MATLAB Production Server.

Create Function In MATLAB
In MATLAB, examine the MATLAB program that you want packaged.

For this example, write a function addmatrix.m as follows.

function a = addmatrix(a1, a2)
a = a1 + a2;

At the MATLAB command prompt, enter addmatrix([1 4 7; 2 5 8; 3 6 9], [1 4 7; 2 5
8; 3 6 9]).

The output is:

 ans =
 2 8 14
 4 10 16
 6 12 18

Create Deployable Archive with Production Server Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Production Server Compiler. In the Production Server Compiler project
window, click Deployable Archive (.ctf).

Alternately, you can open the Production Server Compiler app by entering
productionServerCompiler at the MATLAB prompt.

2 In the MATLAB Compiler SDK project window, specify the main file of the MATLAB application
that you want to deploy.

1
In the Exported Functions section of the toolstrip, click .

2 In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

7 Compile a Deployable Archive for MATLAB Production Server

7-2

The function addmatrix.m is added to the list of main files.

Customize the Application and Its Appearance
You can customize your deployable archive, and add more information about the application as
follows:

• Archive information — Editable information about the deployed archive.
• Additional files required for your archive to run — Additional files required by the generated

archive to run. These files are included in the generated archive installer. See “Manage Required
Files in Compiler Project”.

• Files packaged for redistribution — Files that are installed with your application. These files
include:

• Generated deployable archive
• Generated readme.txt

See “Specify Files to Install with Application”
• Include MATLAB function signature file — Add or create a function signature file to help

clients use your MATLAB functions.

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.

 Package Deployable Archives with Production Server Compiler App

7-3

2 In the Package dialog box, verify that the option Open output folder when process
completes is selected.

When the deployment process is complete, examine the generated output.

• for_redistribution — A folder containing the installer to distribute the archive.
• for_testing — A folder containing the raw generated files to create the installer
• PackagingLog.txt — Log file generated by the packaging tool.

See Also
deploytool | mcc | productionServerCompiler

More About
• Production Server Compiler

7 Compile a Deployable Archive for MATLAB Production Server

7-4

Package Deployable Archives from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 7-5
“Package a Deployable Archive with mcc” on page 7-5
“Differences Between Compiler Apps and Command Line” on page 7-5

You can package deployable archives at the MATLAB prompt or your system prompt using either of
these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Package a Deployable Archive with mcc
The mcc command invokes the MATLAB Compiler and provides fine-level control over the packaging
of the deployable archive. It, however, cannot package the results in an installer.

To invoke the compiler to generate a deployable archive, use the -W CTF:component_name flag with
mcc. The -W CTF:component_name flag creates a deployable archive called component_name.ctf.

For packaging deployable archives, you can also use the following options.

Option Description
-a filePath Add any files on the path to the generated binary.
-d outFolder Specify the folder into which the results of

packaging are written.
class{className:mfilename...} Specify that an additional class is generated that

includes methods for the listed MATLAB files.

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are
customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

 Package Deployable Archives from Command Line

7-5

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Package Deployable Archives with Production Server Compiler App” on page 7-2

7 Compile a Deployable Archive for MATLAB Production Server

7-6

Build Excel Add-In and Deployable Archive

Note Excel add-in can be packaged using 64 bit Windows and can be deployed on either 32 or 64 bit
Excel.

To create an Excel add-In that integrates with MATLAB Production Server:

1 Ensure that the setting Trust access to the VBA project object model is selected in the Excel
Trust Center.

2 Open the Production Server Compiler app.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
c Click Production Server Compiler to open the project window.

3 In the Application Type section of the toolstrip, select Deployable Archive with Excel
Integration from the list.

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select the desired files.

 Build Excel Add-In and Deployable Archive

7-7

c Click Open to select the files and close the file explorer.

The selected files are added to the list of files and a minus button appears under the plus
button.

Note Functions that return a variable number of outputs are not supported by add-ins that
use code running on a MATLAB Production Server instance.

5 Inspect the Archive Information section of the app.

The first text field is the name of the archive. The name of the archive determines the names of
the generated artifacts and the URL used to connect to the server.

6 Inspect the class mapping table to ensure that all desired functions are being compiled.
7 If you need to change the marshaling rules for a function, select Data Conversion Properties

from the function name’s context menu.

For more information, see “Data Marshaling Rules”.
8 Optionally configure the default server configuration packaged with the installer.

The server configuration defines the connection to the MATLAB Production Server instance
running the MATLAB code.

a Search the Default Server Configuration table for the URL to package with the installer.
b If it is in the table, select it.
c If not, click Add to add it to the table.

9 Inspect the Files required for your archive to run and Files installed with your archive
sections of the app.

These sections of the app list all of the files that are packaged with the compiled code.

Files required for your archive to run lists the files on which your function is dependent. They
are packaged into the deployable archive and are only for the server. See “Manage Required
Files in Compiler Project” (MATLAB Production Server).

Files installed with your archive includes sections for both the client and the server. The files
listed are generated by the compiler and should be delivered to the person installing the
application.

10 Click Package to generate the add-in and the deployable archive.

7 Compile a Deployable Archive for MATLAB Production Server

7-8

11 Select the Open output folder when process completes check box to display the generated
output.

When the deployment process is complete, a file explorer opens and displays the generated
output.

12 Click Close on the Package window.
13 Verify the contents of the generated output:

• for_redistribution — A client folder containing the generated installer and a server
folder containing a .zip file

• for_testing — A client folder containing the raw files generated for the add-in and a
server folder containing the raw files generated for the deployable archive

• for_redistribution_files_only — A client folder containing only the files needed to
redistribute the add-in and a server folder containing only the files needed to redistribute
the deployable archive

• PackagingLog.txt — A log file generated by the compiler

 Build Excel Add-In and Deployable Archive

7-9

Package a COM Component

• “Create a Generic COM Component with MATLAB Code” on page 8-2
• “Package COM Components from Command Line” on page 8-6
• “Distribute COM Components to Application Developers” on page 8-10

8

Create a Generic COM Component with MATLAB Code
Supported platform: Windows

This example shows how to create a generic COM component using a MATLAB function. You can then
pass the generated package to the developer who is responsible for integrating it into an application.
The target system does not require a licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want packaged. For this example, open
makesquare.m located in matlabroot\toolbox\dotnetbuilder\Examples\VSVersion\COM
\MagicSquareExample\MagicSquareComp.

function y = makesquare(x)

y = magic(x);

At the MATLAB command prompt, enter makesquare(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Generic COM Component Using Library Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In Application

Deployment, click Library Compiler. In the MATLAB Compiler project window, click Generic
COM Component.

Alternately, you can open the Library Compiler app by entering libraryCompiler at the
MATLAB prompt.

2 In the MATLAB Compiler project window, specify the files of the MATLAB application that you
want to deploy.

a
In the Exported Functions section of the toolstrip, click .

b In the Add Files window, browse to the example folder, and select the function you want to
package. Click Open.

8 Package a COM Component

8-2

The function is added to the list of exported function files. Repeat this step to package multiple
files in the same application.

3 In the Packaging Options section of the toolstrip, decide whether to include the MATLAB
Runtime installer in the generated application by selecting one of the options:

• Runtime downloaded from web — Generate an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application. You can specify the
filename of the installer.

• Runtime included in package — Generate an application that includes the MATLAB
Runtime installer. You can specify the filename of the installer.

Note The first time you select this option, you are prompted to download the MATLAB
Runtime installer or obtain a CD if you do not have Internet access.

4 In the Library Name field, replace makesquare with MagicSquareComp.
5 Verify that the function defined in makesquare.m is mapped into Class1.

Customize the Application and Its Appearance
You can customize the installer, customize your application, and add more information about the
application as follows:

• Library information — Information about the deployed application. You can also customize the
appearance of the application by changing the application icon and splash screen. The generated
installer uses this information to populate the installed application metadata. See “Customize the
Installer”.

• Additional installer options — Default installation path for the generated installer and custom
logo selection. See “Change the Installation Path”.

• Files required for your library to run — Additional files required by the generated application
to run. These files are included in the generated application installer. See “Manage Required Files
in Compiler Project”.

• Files installed for your end user — Files that are installed with your application. These files
include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application”

• Additional runtime settings — Platform-specific options for controlling the generated
executable. See “Additional Runtime Settings”.

 Create a Generic COM Component with MATLAB Code

8-3

Package the Application
1 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
2 In the Package dialog box, verify that Open output folder when process completes is

selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For more information about the files generated in these folders, see “Files Generated After
Packaging MATLAB Functions”.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

8 Package a COM Component

8-4

See Also
deploytool | libraryCompiler | mcc

More About
• “Call COM Objects in Visual C++ Programs”

 Create a Generic COM Component with MATLAB Code

8-5

Package COM Components from Command Line
You can package COM components at the MATLAB prompt or your system prompt using either of
these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler project.
• mcc invokes the MATLAB Compiler to create a deployable application at the command prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package an already
existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but not generate
an installer.

• -package project_name — Invoke the correct compiler app to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined by the
magicsquare project and packages them into an installer that you can distribute to others.

Create COM Component with mcc
The mcc command invokes MATLAB Compiler to create a COM component at the command prompt
and provides fine-level control while packaging the component. It does not package the results in an
installer.

A MATLAB class cannot be directly packaged into a COM object. You can, however, use a user-
generated class inside a MATLAB file and build a COM object from that file. You can use the MATLAB
command-line interface instead of the Library Compiler app to create COM objects. Do this by issuing
the mcc command with options. If you use mcc, you do not create a project.

The following table provides an overview of some mcc options related to components, along with
syntax and examples of their usage.

Action to Perform Description
Create component that has
one class.

mcc option to use: -W com

The W option with com as the type controls the generation of wrapper
files, which you can use to support components.
Syntax

mcc -W
'com:<component_name>[,<class_name>[,<major>.<minor>]
]'

An unspecified <class_name> defaults to <component_name>, and
an unspecified version number defaults to the latest version built or
1.0, if there is no previous version.

8 Package a COM Component

8-6

Action to Perform Description
Example

mcc -W 'com:mycomponent,myclass,1.0' -T link:lib
foo.m bar.m

The example creates a COM component called mycomponent, which
contains a single COM class named myclass with methods foo and
bar, and a version of 1.0.

Add additional classes to a
COM component.

mcc option to use: Not needed

A separate COM named <class_name> is created for each class
argument that is passed.

Following the <class_name> parameter is a comma-separated list of
source files that are encapsulated as methods for the class.
Syntax

class{<class_name>:[file, [file,...]]}
Example

mcc -B 'com:mycomponent,myclass,1.0' foo.m bar.m
class{myclass2:foo2.m, bar2.m}

The example creates a COM component named mycomponent with
two classes: myclass has methods foo and bar, and myclass2 has
methods foo2 and bar2. The version is version 1.0.

Simplify the command-line
input for components.

mcc option to use: -B com:

Uses the bundle.
Syntax

mcc -B '<bundle>'[:<a1>,<a2>,...,<an>]
Example

mcc -B 'com:mycomponent,myclass,1.0' foo.m bar.m

 Package COM Components from Command Line

8-7

Action to Perform Description
Control how each COM class
uses the MATLAB Runtime.

mcc option to use: -S

By default, a new MATLAB Runtime instance is created for each
instance of each COM class in the component. Use -S to change the
default.

This option tells the compiler to create a single MATLAB Runtime at
the time when the first COM class is instantiated. This MATLAB
Runtime is reused and shared among all subsequent class instances,
resulting in more efficient memory usage and eliminating the
MATLAB Runtime startup cost in each subsequent class instantiation.

When using -S, note that all class instances share a single MATLAB
workspace and share global variables in the MATLAB files used to
build the component. Therefore, properties of a COM class behave as
static properties instead of instance-wise properties.

Note The default behavior dictates that a new MATLAB Runtime be
created for each instance of a class, so when the class is destroyed,
the MATLAB Runtime is destroyed as well. If you want to retain the
state of global variables (such as those allocated for drawing figures,
for instance), use the -S option.
Example

mcc -S -B 'com:mycomponent,myclass,1.0' foo.m bar.m

The example creates a COM component called mycomponent
containing a single COM class named myclass with methods foo and
bar, and a version of 1.0.

When multiple instances of this class are instantiated in an
application, only one MATLAB Runtime is initialized, and it is shared
by each instance.

Create subfolders needed for
deployment and copy
associated files to them.

mcc option to use: -d

The \src and \distrib subfolders are used to package components.
Syntax

-d foldername

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line interface.
The interactive menus and dialog boxes used in the compiler apps build mcc commands that are
customized to your specification. As such, your MATLAB code is processed the same way as if you
were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not require an
installer, it is faster to execute mcc than go through the compiler app workflow.

8 Package a COM Component

8-8

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Create a Generic COM Component with MATLAB Code”

 Package COM Components from Command Line

8-9

Distribute COM Components to Application Developers
Distribute the following to the application developer integrating the component:

• Function signatures of the deployed MATLAB functions
• Generated COM component
• mwcomutil.dll
• MATLAB Runtime installer

The Library Compiler app generates an installer that packages all of the binary artifacts required for
distributing a COM component. The installer is located in the for_redistribution folder of the
compiler project.

8 Package a COM Component

8-10

Customizing a Compiler Project

• “Customize an Application” on page 9-2
• “Manage Support Packages” on page 9-9

9

Customize an Application
You can customize an application in several ways: customize the installer, manage files in the project,
or add a custom installer path using the Application Compiler app or the Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or Application name
field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the Use mask
option to fill any blank spaces around the icon with white or the Use border option to add a border
around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if the name
is foo, the installed executable is foo.exe, and the Windows start menu entry is foo. The folder
created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of the app.
• Version: The default value is 1.0.
• Author name: Name of the developer.
• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For example, if the

company name is bar, the full installation path would be InstallRoot/bar/ApplicationName.
• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page of the
installer. On Windows systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

9 Customizing a Compiler Project

9-2

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along with a status
bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When the file
explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries onto a target
system.

Windows C:\Program Files\companyName\appName
Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder field under
Additional installer options.

 Customize an Application

9-3

A text field specifying the path appended to the root folder is your installation folder. You can pick the
root folder for the application installation folder. This table lists the optional custom root folders for
each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the installer.

You change the default image in Additional Installer Options by clicking Select custom logo.
When the file explorer opens, locate and select a new image. You can drag and drop a custom image
onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged files on the
target system. You can provide useful information concerning any additional setup that is required to
use the installed binaries and instructions for how to run the application.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what additional
MATLAB files are required for the application to package and run. These files are automatically
packaged into the generated binary. The compiler does not generate any wrapper code that allows
direct access to the functions defined by the required files.

If you are using one of the compiler apps, the required files discovered by the dependency analysis
function are listed in the Files required for your application to run or Files required for your
library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To remove files,
select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not package or
not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of required
files before running. Instead, it packages all the required files that are discovered by the dependency
analysis function and adds them to the generated binary file.

You can add files to the list by passing one or more -a arguments to mcc. The -a arguments add the
specified files to the list of files to be added into the generated binary. For example, -a hello.m
adds the file hello.m to the list of required files and -a ./foo adds all the files in foo and its
subfolders to the list of required files.

9 Customizing a Compiler Project

9-4

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java package
• .NET assembly
• Python package

The sample driver file creation feature in Library Compiler uses MATLAB code to generate sample
driver files in the target language. The sample driver files are used to implement the generated
shared libraries into an application in the target language. In the app, click Create New Sample to
automatically generate a new MATLAB script, or click Add Existing Sample to upload a MATLAB
script that you have already written. After you package your functions, a sample driver file in the
target language is generated from your MATLAB script and is saved in
for_redistribution_files_only\samples. Sample driver files are also included in the installer
in for_redistribution.

To automatically generate a new MATLAB file, click Create New Sample. This opens up a MATLAB
file for you to edit. The sample file serves as a starting point, and you can edit it as necessary based
on the behavior of your exported functions. The sample MATLAB files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical, struct, or cell

array.
• Data must be saved as a local variable and then passed to the exported function in the sample file

code.
• Sample file code should not require user interaction.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Cell arrays and char arrays must be of size 1xN and struct arrays must be scalar. There

are no restrictions on numeric or logical arrays, other than that they must be rectangular, as in
MATLAB.

 Customize an Application

9-5

To upload a MATLAB file that you have already written, click Add Existing Sample. The MATLAB
code should demonstrate how to execute the exported functions. The required MATLAB code can be
only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample option.

You can also choose not to include a sample driver file at all during the packaging step. If you create
your own driver code in the target language, you can later copy and paste it into the appropriate
directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the installer
includes a readme file with instructions on installing the MATLAB Runtime and configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not install the
intended functionality.

When installed on a target computer, the files listed in the Files installed for your end user are
saved in the application folder.

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Generic COM
Components

• Register the
component for the
current user
(Recommended for
non-admin users) —
This option enables
registering the
component for the
current user account.
It is provided for users
without admin rights.

9 Customizing a Compiler Project

9-6

Type of Packaged
Application

Description Additional Runtime Settings Options

.NET Assembly • Create Shared
Assembly — Enables
sharing MATLAB
Runtime installer
instances for
multiple .NET
assemblies.

• Enable .NET
Remoting — Enables
you to remotely access
MATLAB functionality,
as a part of a
distributed system. For
more information, see
“Create a
Remotable .NET
Assembly”.

• Enable Type Safe API
— Enables the type
safe API for the
packaged .NET
assembly.

API Selection for C++ Shared Library

• Create all interfaces — Create interfaces for shared libraries using both the mwArray API and
the MATLAB Data API.

• Create interface that uses the mwArray API — Create an interface for a shared library using
the mwArray API. The interface uses C-style functions to initialize the MATLAB Runtime, load the
compiled MATLAB functions into the MATLAB Runtime, and manage data that is passed between
the C++ code and the MATLAB Runtime. The interface supports only C++03 functionality. For an
example, see “Generate a C++ mwArray API Shared Library and Build a C++ Application”.

• Create interface that uses the MATLAB Data API — Create an interface for a shared library
using MATLAB Data API. It uses a generic interface that has modern C++ semantics. The
interface supports C++11 functionality. For more information, see “Generate a C++ MATLAB
Data API Shared Library and Build a C++ Application”.

 Customize an Application

9-7

See Also
libraryCompiler

More About
• “Create a C Shared Library with MATLAB Code”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”
• “Generate a .NET Assembly and Build a .NET Application”
• “Create a Generic COM Component with MATLAB Code”
• “Generate a Java Package and Build a Java Application”
• “Generate a Python Package and Build a Python Application”

9 Customizing a Compiler Project

9-8

Manage Support Packages
Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, the
app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list is
determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the mcc.xml file of

the support package, and the base product of the support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In this case,
the compiler adds the information to the installation notes. You can edit installation notes in the
Additional Installer Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the support
package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide additional
processing capabilities. If your MATLAB code uses a toolbox with an installed support package, use
the-a flag with mcc command when packaging your MATLAB code to specify supporting files in the

 Manage Support Packages

9-9

support package folder. For example, if your function uses the OS Generic Video Interface
support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In this case,
you are responsible for downloading and installing the required drivers.

9 Customizing a Compiler Project

9-10

Advanced Uses of the Command Line
Compiler

• “Simplify Compilation Using Macros” on page 10-2
• “Invoke MATLAB Build Options” on page 10-4
• “MATLAB Runtime Component Cache and Deployable Archive Embedding” on page 10-6

10

Simplify Compilation Using Macros

In this section...
“Macros” on page 10-2
“Working With Macros” on page 10-2

Macros
The compiler, through its exhaustive set of options, gives you access to the tools you need to do your
job. If you want a simplified approach to compilation, you can use one simple macro that allows you
to quickly accomplish basic compilation tasks. Macros let you group several options together to
perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a standard compilation
and the multioption alternative.

Macro Bundle Creates Option Equivalence

Function Wrapper |Output
Stage ||

-l macro_option_l Library -W lib -T link:lib
-m macro_option_m Standalone application -Wmain-Tlink:exe

Working With Macros
The -m option tells the compiler to produce a standalone application. The -m macro is equivalent to
the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information that they provide to the
compiler.

-m Macro

Option Function
-W main Produce a wrapper file suitable for a standalone application.
-T link:exe Create an executable link as the output.

Changing Macros

You can change the meaning of a macro by editing the corresponding macro_option file in
matlabroot\toolbox\compiler\bundles. For example, to change the -m macro, edit the file
macro_option_m in the bundles folder.

Note This changes the meaning of -m for all users of this MATLAB installation.

10 Advanced Uses of the Command Line Compiler

10-2

Specifying Default Macros

As the MCCSTARTUP functionality has been replaced by bundle technology, the macro_default file
that resides in toolbox\compiler\bundles can be used to specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

 mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

mcc -v -W 'lib:libfoo' -T link:lib foo.m

 Simplify Compilation Using Macros

10-3

Invoke MATLAB Build Options
In this section...
“Specify Full Path Names to Build MATLAB Code” on page 10-4
“Using Bundles to Build MATLAB Code” on page 10-4

Specify Full Path Names to Build MATLAB Code
If you specify a full path name to a MATLAB file on the mcc command line, the compiler

1 Breaks the full name into the corresponding path name and file names (<path> and <file>).
2 Replaces the full path name in the argument list with “-I <path> <file>”.

Specifying Full Path Names

For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For example, suppose you
have two different MATLAB files that are both named myfile.m and they reside in /home/user/
dir1 and /home/user/dir2. The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

The compiler finds the myfile.m in dir1 and compiles it instead of the one in dir2 because of the
behavior of the -I option. If you are concerned that this might be happening, you can specify the -v
option and then see which MATLAB file the compiler parses. The -v option prints the full path name
to the MATLAB file during the dependency analysis phase.

Note The compiler produces a warning (specified_file_mismatch) if a file with a full path name
is included on the command line and the compiler finds it somewhere else.

Using Bundles to Build MATLAB Code
Bundles provide a convenient way to group sets of compiler options and recall them as needed. The
syntax of the bundle option is:

-B <bundle>[:<a1>,<a2>,...,<an>]

where bundle is either a predefined string such as cpplib or csharedlib or the name of a file that
contains a set of mcc command-line options, arguments, filenames, and/or other -B options.

10 Advanced Uses of the Command Line Compiler

10-4

A bundle can include replacement parameters for compiler options that accept names and version
numbers. For example, the bundle for C shared libraries, csharedlib, consists of:

-W lib:%1% -T link:lib

To invoke the compiler to produce the C shared library mysharedlib use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle will be replaced with the corresponding option specified to the
bundle. Use %% to include a % character. It is an error to pass too many or too few options to the
bundle.

Note You can use the -B option with a replacement expression as is at the DOS or UNIX prompt. If
more than one parameter is passed, you must enclose the expression that follows the -B in single
quotes. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only parameter being passed. If
the example had two or more parameters, then the quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

Available Bundle Files

Bundle File Creates Contents
cpplib C++ library -W cpplib:library_name -T link:lib
csharedlib C library -W lib:library_name -T link:lib
ccom COM component -W com:component_name,className,version -T link:lib
cexcel Excel Add-in -W excel:addin_name,className,version -T link:lib
cjava Java package -W java:packageName,className
dotnet .NET assembly -W

dotnet:assembly_name,className,framework_version,sec
urity,remote_type -T link:lib

 Invoke MATLAB Build Options

10-5

MATLAB Runtime Component Cache and Deployable Archive
Embedding

In this section...
“Overriding Default Behavior” on page 10-7
“For More Information” on page 10-7

Deployable archive data is automatically embedded directly in compiled components and extracted to
a temporary folder.

Automatic embedding enables usage of MATLAB Runtime Component Cache features through
environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically extracted
• Add diagnostic error printing options that can be used when automatically extracting the

deployable archive, for troubleshooting purposes
• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of where

you want the deployable archive to
be extracted, this variable overrides
the default per-user component
cache location. This is true for
embedded .ctf files only.

Does not apply

MCR_CACHE_SIZE When set, this variable overrides
the default component cache size.

The initial limit for this variable is
32M (megabytes). This may,
however, be changed after you have
set the variable the first time. Edit
the file .max_size, which resides
in the file designated by running the
mcrcachedir command, with the
desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with the
“Overriding Default Behavior” on page 10-7 option.

Caution If you run mcc specifying conflicting wrapper and target types, the deployable archive will
not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the deployable archive embedded in it, as if you had specified
a -C option to the command line.

10 Advanced Uses of the Command Line Compiler

10-6

Overriding Default Behavior
To extract the deployable archive in a manner prior to R2008b, alongside the compiled .NET
assembly, compile using the mcc's -C option.

You might want to use this option to troubleshoot problems with the deployable archive, for example,
as the log and diagnostic messages are much more visible.

For More Information
For more information about the deployable archive, see “Deployable Archive” (MATLAB Compiler).

 MATLAB Runtime Component Cache and Deployable Archive Embedding

10-7

Work with the MATLAB Runtime

• “MATLAB Runtime Startup Options” on page 11-2
• “Using the MATLAB Runtime User Data Interface” on page 11-4
• “Display the MATLAB Runtime Initialization Messages” on page 11-6

11

MATLAB Runtime Startup Options

Retrieve MATLAB Runtime Startup Options
Use these functions to return data about the MATLAB Runtime state when working with shared
libraries.

Function and Signature When to Use Return Value
bool mclIsMCRInitialized() Use mclIsMCRInitialized() to

determine whether or not the
MATLAB Runtime has been properly
initialized.

Boolean (true or false). Returns
true if MATLAB Runtime is already
initialized, else returns false.

bool mclIsJVMEnabled() Use mclIsJVMEnabled() to
determine if the MATLAB Runtime
is started with an instance of a Java
Virtual Machine (JVM™).

Boolean (true or false). Returns
true if MATLAB Runtime has been
started with a JVM instance, else
returns false.

const char*
mclGetLogFileName()

Use mclGetLogFileName() to
retrieve the name of the log file
used by the MATLAB Runtime.

Character string representing log
file name used by the MATLAB
Runtime, preceded by the character.

bool mclIsNoDisplaySet() Use mclIsNoDisplaySet() to
determine if -nodisplay option is
enabled.

Boolean (true or false). Returns
true if -nodisplay is enabled,
else returns false.

Note false is always returned on
Windows systems since the -
nodisplay option is not supported
on Windows systems.

When running on Mac, if -
nodisplay is used as one of the
options included in
mclInitializeApplication,
then the call to
mclInitializeApplication
must occur before calling
mclRunMain.

Note All of these attributes have properties of write-once, read-only.

Retrieve Information About MATLAB Runtime Startup Options

The following example demonstrates how to pass options to a C or C++ shared library and how to
retrieve the corresponding values after they are set.

 const char* options[4];
 options[0] = "-logfile";
 options[1] = "logfile.txt";
 options[2] = "-nojvm";

11 Work with the MATLAB Runtime

11-2

 options[3] = "-nodisplay";
 if(!mclInitializeApplication(options,4))
 {
 fprintf(stderr,
 "Could not initialize the application.\n");
 return -1;
 }
 printf("MCR initialized : %d\n", mclIsMCRInitialized());
 printf("JVM initialized : %d\n", mclIsJVMEnabled());
 printf("Logfile name : %s\n", mclGetLogFileName());
 printf("nodisplay set : %d\n", mclIsNoDisplaySet());
 fflush(stdout);

 MATLAB Runtime Startup Options

11-3

Using the MATLAB Runtime User Data Interface
The MATLAB Runtime User Data Interface lets you easily access MATLAB Runtime data. It allows
keys and values to be passed among a MATLAB Runtime instance, the MATLAB code running on the
MATLAB Runtime, and the host application that created the instance. Through calls to the MATLAB
Runtime User Data Interface API, you access MATLAB Runtime data by creating a per-instance
associative array of mxArrays, consisting of a mapping from string keys to mxArray values. Reasons
for doing this include, but are not limited to the following:

• You need to supply run-time profile information to a client running an application created with the
Parallel Computing Toolbox™. You supply and change profile information on a per-execution basis.
For example, two instances of the same application may run simultaneously with different profiles.
For more information, see “Use Parallel Computing Toolbox in Deployed Applications”.

• You want to set up a global workspace, a global variable, or variables that MATLAB and your client
can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB functions callable from within deployed application MATLAB code
• Four external C functions callable from within deployed application wrapper code

MATLAB Functions
Use the MATLAB functions getmcruserdata and setmcruserdata from deployed MATLAB
applications. They are loaded by default only in applications created with the MATLAB Compiler or
MATLAB Compiler SDK products.

You can include setmcruserdata and getmcruserdata in your packaged application using mcc as
follows:

mcc -g -W cpplib:<lib> -T link:lib ... setmcruserdata.m getmcruserdata.m

You can also use the %# function in your MATLAB file to include setmcruserdata and
getmcruserdata. Doing so ensures inclusion of these functions in the packaged application when
you use deploytool.

Tip getmcruserdata and setmcruserdata produce an Unknown function error when called in
MATLAB if the MCLMCR module cannot be located. You can avoid this situation by calling
isdeployed before calling getmcruserdata and setmcruserdata. For more information about
the isdeployed function, see the isdeployed reference page.

Set and Retrieve MATLAB Runtime Data for Shared Libraries
There are many possible scenarios for working with MATLAB Runtime data. The most general
scenario involves setting the MATLAB Runtime with specific data for later retrieval, as follows:

1 In your code, include the MATLAB Runtime header file and the library header generated by
MATLAB Compiler SDK.

2 Properly initialize your application using mclInitializeApplication.

11 Work with the MATLAB Runtime

11-4

3 After creating your input data, write or set it to the MATLAB Runtime with setmcruserdata.
4 After calling functions or performing other processing, retrieve the new MATLAB Runtime data

with getmcruserdata.
5 Free up storage memory in work areas by disposing of unneeded arrays with mxDestroyArray.
6 Shut down your application properly with mclTerminateApplication.

See Also
getmcruserdata | setmcruserdata

 Using the MATLAB Runtime User Data Interface

11-5

Display the MATLAB Runtime Initialization Messages
You can display a console message for end users that informs them when MATLAB Runtime
initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB runtime version x.xx)
• Customize the start-up or completion message with text of your choice. The default start-up

message will also display prior to displaying your customized start-up message.

Some examples of different ways to invoke this option follow:

This command: Displays:
mcc -R -startmsg Default start-up message Initializing

MATLAB Runtime version x.xx
mcc -R -startmsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for start-up

mcc -R -completemsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for completion

mcc -R -startmsg,'user customized
message' -R -completemsg,'user
customized message"

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for both start-up and
completion by specifying -R before each option

mcc -R -startmsg,'user customized
message',-completemsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and user
customized message for both start-up and
completion by specifying -R only once

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB command window, place the comma inside the single quote.

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'
• If your initialization message has a space in it, call mcc from the system command window or

use !mcc from MATLAB.

11 Work with the MATLAB Runtime

11-6

Limitations and Restrictions

• “Limitations” on page 12-2
• “Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK ”

on page 12-7

12

Limitations

Packaging MATLAB and Toolboxes
MATLAB Compiler SDK supports the full MATLAB language and almost all toolboxes based on
MATLAB except:

• Most of the prebuilt graphical user interfaces included in MATLAB and its companion toolboxes.
• Functionality that cannot be called directly from the command line.
• Symbolic Math Toolbox™
• Cross-platform compatibility of applications. For example, you cannot run an application compiled

in Windows on Linux.

Compiled applications can run only on operating systems that run MATLAB. However, components
generated by the MATLAB Compiler SDK cannot be used in MATLAB. Also, since the MATLAB
Runtime is approximately the same size as MATLAB, applications built with MATLAB Compiler SDK
need specific storage memory and RAM to operate. For the most up-to-date information about system
requirements, go to the MathWorks website.

To see the full list of MATLAB Compiler SDK limitations, visit: https://www.mathworks.com/
products/compiler/compiler_support.html.

Note For a list of functions not supported by the MATLAB Compiler SDK See “Functions Not
Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK” on page 12-7.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler SDK creates a standalone application, it packages the MATLAB files that
you specify on the command line. In addition, it includes any other MATLAB files that your packaged
MATLAB files call. MATLAB Compiler SDK uses a dependency analysis, which determines all the
functions on which the supplied MATLAB files, MEX-files, and P-files depend.

Note If the MATLAB file associated with a p-file is unavailable, the dependency analysis cannot
discover the p-file dependencies.

The dependency analysis cannot locate a function if the only place the function is called in your
MATLAB file is a call to the function in either of the following:

• Callback string
• Character array passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from the dependency analyzer in .mat files that are
loaded by compiled applications. Use the mcc -a argument or the %#function pragma to
identify .mat file classes or functions that are supported by the load command.

MATLAB Compiler SDK does not look in these text character arrays for the names of functions to
package.

12 Limitations and Restrictions

12-2

https://www.mathworks.com/support/sysreq.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html

Symptom

Your application runs, but an interactive user interface element, such as a push button, does not
work. The compiled application issues this error message:

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function
 change_colormap from FEVAL in stand-alone mode.

Workaround

There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as character arrays
• Specifying callbacks with function handles
• Using the -a option

Specifying Callbacks as Character Arrays

Create a list of all the functions that are specified only in callback character arrays and pass these
functions using separate %#function pragma statements. This overrides the product dependency
analysis and instructs it to explicitly include the functions listed in the %#function pragmas.

For example, the call to the change_colormap function in the sample application my_test
illustrates this problem. To make sure MATLAB Compiler SDK processes the change_colormap
MATLAB file, list the function name in the %#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
 'Style', 'pushbutton',...
 'Position',[10 10 133 25],...
 'String', 'Make Black & White',...
 'CallBack','change_colormap');

Specifying Callbacks with Function Handles

To specify the callbacks with function handles, use the same code as in the example above, and
replace the last line with:

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB Programming
Fundamentals documentation.

Using the -a Option

Instead of using the %#function pragma, you can specify the name of the missing MATLAB file on
the MATLAB Compiler SDK command line using the -a option.

 Limitations

12-3

Finding Missing Functions in a MATLAB File
To find functions in your application that need to be listed in a %#function pragma, search your
MATLAB file source code for text specified as callback character arrays or as arguments to the
feval, fminbnd, fminsearch, funm, and fzero functions or any ODE solvers.

To find text used as callback character array, search for the characters “Callback” or “fcn” in your
MATLAB file. This search finds all the Callback properties defined by graphics objects, such as
uicontrol and uimenu. In addition, it finds the properties of figures and axes that end in Fcn, such
as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on the UNIX System
Several warnings might appear when you run a standalone application on the UNIX system.

To suppress the libjvm.so warning, set the dynamic library path properly for your platform. See
“MATLAB Runtime Path Settings for Run-Time Deployment”.

You can also use the compiler option -R -nojvm to set your application's nojvm run-time option, if
the application is capable of running without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you get a run-time error.

Cannot Create the Output File
If you receive this error, there are several possible causes to consider.

Can't create the output file filename

Possible causes include:

• Lack of write permission for the folder where MATLAB Compiler SDK is attempting to write the
file (most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler SDK is attempting to write the file
(most likely the current working folder).

• If you are creating a standalone application and have been testing it, it is possible that a process is
running and is blocking MATLAB Compiler SDK from overwriting it with a new version.

No MATLAB File Help for Packaged Functions
If you create a MATLAB file with self-documenting online help and package it, the results of following
command are unintelligible:

help filename

Note For performance reasons, MATLAB file comments are stripped out before MATLAB Runtime
encryption.

12 Limitations and Restrictions

12-4

No MATLAB Runtime Versioning on Mac OS X
The feature that allows you to install multiple versions of the MATLAB Runtime on the same machine
is not supported on Mac OS X. When you receive a new version of MATLAB, you must recompile and
redeploy all your applications and components. Also, when you install a new MATLAB Runtime on a
target machine, you must delete the old version of the MATLAB Runtime and install the new one. You
can have only one version of the MATLAB Runtime on the target machine.

Older Neural Networks Not Deployable with MATLAB Compiler
Loading networks saved from older Deep Learning Toolbox versions requires some initialization
routines that are not deployable. Therefore, these networks cannot be deployed without first being
updated.

For example, deploying with Deep Learning Toolbox Version 5.0.1 (2006b) and MATLAB Compiler
Version 4.5 (R2006b) yields the following errors at run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
 function "initwb".
Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple Arguments in
Packaged Mode
In compiled mode, only one argument can be present in a call to the MATLAB printdlg function (for
example, printdlg(gcf)).

You cannot receive an error when making at call to printdlg with multiple arguments. However,
when an application containing the multiple-argument call is packaged, the action fails with the
following error message:

Error using = => printdlg at 11
PRINTDLG requires exactly one argument

Packaging a Function with which Does Not Search Current Working
Folder
Using which, as in this example, does not cause the current working folder to be searched in
deployed applications. In addition, it may cause unpredictable behavior of the open function.

function pathtest
which myFile.mat
open('myFile.mat')

Use one of the following solutions as an alternative:

• Use the pwd function to explicitly point to the file in the current folder, as follows:

 Limitations

12-5

open([pwd '/myFile.mat'])

• Rather than using the general open function, use load or other specialized functions for your
particular file type, as load explicitly checks for the file in the current folder. For example:

load myFile.mat

• Include your file in the Files required for your application to run area of the Compiler app or
the -a flag using mcc.

Restrictions on Using C++ SetData to Dynamically Resize an mwArray
You cannot use the C++ SetData method to dynamically resize mwArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SetData to increase the size of the array to a length of five elements.

Accepted File Types for Packaging
The valid and invalid file types for packaging using deployment apps are as follows:

Target
Application

Valid File Types Invalid File Types

Standalone
Application

MATLAB MEX files, MATLAB scripts,
and MATLAB functions. These files must
have a single entry point.

MATLAB class files, protected function
files (.p files), Java functions, COM
or .NET components, and data files.
MATLAB class files can be dependent
files.

Library
Compiler

MATLAB MEX files and MATLAB
functions. These files must have a single
entry point.

MATLAB scripts, MATLAB class files,
protected function files (.p files), Java
functions, COM or .NET components, and
data files. MATLAB class files can be
dependent files.

MATLAB
Production
Server

MATLAB MEX files and MATLAB
functions. These files must have a single
entry point.

MATLAB scripts, MATLAB class files,
protected function files (.p files), Java
functions, COM or .NET components, and
data files. MATLAB class files can be
dependent files.

See Also

More About
• “Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK”

on page 12-7

12 Limitations and Restrictions

12-6

Functions Not Supported for Compilation by MATLAB Compiler
and MATLAB Compiler SDK

Note Due to the number of active and ever-changing list of MathWorks products and functions, this
is not a complete list of functions that cannot be compiled. If you have a question as to whether a
specific MathWorks product's function is able to be compiled or not, the definitive source is that
product's documentation. For an updated list of such functions, see Support for MATLAB and
Toolboxes.

Functions that cannot be compiled fall into the following categories:

• Functions that print or report MATLAB code from a function, such as the MATLAB help function
or debug functions.

• Simulink® functions, in general.
• Functions that require a command line, such as the MATLAB lookfor function.
• clc, home, and savepath, which do not do anything in deployed mode.

In addition, there are functions and programs that have been identified as non-deployable due to
licensing restrictions.

Only certain tools that allow run-time manipulation of figures are supported for compilation, for
example, adding legends, selecting data points, zooming in and out, etc.

mccExcludedFiles.log lists all the functions and files excluded by mcc. It is created after each
attempted build.

 Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

12-7

https://www.mathworks.com/products/compiler/supported/compiler_support.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html

List of Unsupported Functions and Programs

add_block
add_line
checkcode
close_system
colormapeditor
commandwindow
Control System Toolbox™ prescale GUI
createClassFromWsdl
dbclear
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
delete_block
delete_line
depfun
doc
echo
edit
fields
figure_palette
get_param
help
home
inmem
keyboard
linkdata
linmod
matlab.unittest.TestSuite.fromProject
mislocked
mlock
more
munlock

12 Limitations and Restrictions

12-8

new_system
open
open_system
pack
pcode
plotbrowser
plotedit
plottools
profile
profsave
propedit
propertyeditor
publish
rehash
restoredefaultpath
run
segment
set_param
sldebug
type

 Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

12-9

Functions

13

%#function
Pragma to help MATLAB Compiler locate functions called through feval, eval, Handle Graphics
callback, or objects loaded from MAT-files

Syntax
%#function function1 [function2 ... functionN]

%#function object_constructor

Description
The %#function pragma informs MATLAB Compiler that the specified function(s) will be called
through an feval, eval,Handle Graphics callback, or objects loaded from MAT-files.

Use the %#function pragma in standalone applications to inform MATLAB Compiler that the
specified function(s) should be included in the compilation, whether or not MATLAB Compiler's
dependency analysis detects the function(s). It is also possible to include objects by specifying the
object constructor.

Without this pragma, the product's dependency analysis will not be able to locate and compile all
MATLAB files used in your application. This pragma adds the top-level function as well as all the local
functions in the file to the compilation.

Examples
Example 1

 function foo
 %#function bar

 feval('bar');

 end %function foo

By implementing this example, MATLAB Compiler is notified that function bar will be included in the
compilation and is called through feval.

Example 2

function foo
 %#function bar foobar

 feval('bar');
 feval('foobar');

 end %function foo

In this example, multiple functions (bar and foobar) are included in the compilation and are called
through feval.

13 Functions

13-2

Example 3

function foo
 %#function ClassificationSVM

 load('svm-classifier.mat');
 num_dimensions = size(svm_model.PredictorNames, 2);

 end %function foo

In this example, an object from the class ClassificationSVM is loaded from a MAT-file. For more
information, see “MATLAB Data Files in Compiled Applications” (MATLAB Compiler).

Introduced before R2006a

 %#function

13-3

componentinfo
Query system registry about COM component created with MATLAB Compiler SDK

Syntax
info = componentinfo
info = componentinfo(component_name)
info = componentinfo(component_name, major_revision_number,
minor_revision_number)

Arguments
component_name MATLAB character array naming the COM component

created by MATLAB Compiler SDK. Names are case
sensitive. If the argument is not supplied, information is
returned on all installed components.

major_revision_number Component major revision number. If the argument is not
supplied, information is returned on all major revisions.

minor_revision_number Component minor revision number. Default value is 0.

Description
info = componentinfo returns information for all components installed on the system.

info = componentinfo(component_name) returns information for all revisions of
component_name.

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major and minor version of
component_name.

The return value is an array of structures representing all the registry and type information needed
to load and use the component.

This table describes the fields in componentinfo.

13 Functions

13-4

Registry Information Returned by componentinfo

Field Description
Name Component name.
TypeLib Component type library.
LIBID Component type library GUID.
MajorRev Major version number .
MinorRev Minor version number.
FileName Type library file name and path. Since all the compiler components have

the type library bound into the DLL, this file name is the same as the DLL
name and path.

Interfaces An array of structures defining all interface definitions in the type library.
Each structure contains two fields:

• Name - Interface name.
• IID - Interface GUID.

CoClasses An array of structures defining all COM classes in the component. Each
structure contains these fields:

• Name - Class name.
• CLSID - GUID of the class.
• ProgID - Version-dependent program ID.
• VerIndProgID - Version-independent program ID.
• InprocServer32 - Full name and path to component DLL.
• Methods - A structure containing function prototypes of all class

methods defined for this interface. This structure contains four fields:

• IDL - An array of Interface Description Language function
prototypes.

• M - An array of MATLAB function prototypes.
• C - An array of C-language function prototypes.
• VB - An array of VBA function prototypes.

• Properties - A cell array containing the names of all class properties.
• Events - A structure containing function prototypes of all events
defined for this class. This structure contains four fields:

• IDL - An array of Interface Description Language function
prototypes.

• M - An array of MATLAB function prototypes.
• C - An array of C-language function prototypes.
• VB - An array of VBA function prototypes.

 componentinfo

13-5

Examples
Function Call Returned Information
Info = componentinfo Information for all installed components.
Info = componentinfo('mycomponent') Information for all revisions of

mycomponent.
Info = componentinfo('mycomponent',2,3) Information for revision 2.3 of

mycomponent.

Tips
Use the componentinfo function to get information (such as class name, program ID) to pass on to
users of a component that you create.

The componentinfo function also provides a record of changes made to the registry on your
development machine. This information might be useful for debugging if you run into problems.

Introduced before R2006a

13 Functions

13-6

ctfroot
Location of files related to deployed application

Syntax
root = ctfroot

Description
root = ctfroot returns the name of the folder where the deployable archive for the application is
expanded.

Use this function to access any file that the user would have included in their project (excluding the
ones in the packaging folder).

Examples
Determine location of deployable archive

appRoot = ctfroot;

Output Arguments
root — Path to expanded deployable archive
character vector

Path to expanded deployable archive returned as a character vector in the form:
application_name_mcr. .

Introduced in R2006a

 ctfroot

13-7

deploytool
Compile and package functions for external deployment

Syntax
deploytool
deploytool project_name
deploytool -build project_name
deploytool -package project_name

Description
deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project preloaded.

deploytool -build project_name runs the appropriate compiler app to build the specified
project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and package
the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

deploytool -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Name of the project to be compiled, specified as a character array or string.The project must be on
the current path.

Introduced in R2006b

13 Functions

13-8

figToImStream
Stream figure as byte array encoded in specified format

Syntax
output = figToImStream
output = figToImStream (Name,Value)

Description
output = figToImStream creates a signed byte array with the PNG data for the current figure.
The size and position of the printed output depends on the figure's PaperPosition[mode]
properties.

output = figToImStream (Name,Value) creates a byte array with the image data for the
specified figure. You can specify the encoding format for the image and if the byte array is signed or
unsigned. The size and position of the printed output depends on the figure's
PaperPosition[mode] properties.

Examples
Convert current figure to a signed PNG formatted byte array

surf(peaks)
bytes = figToImStream

Convert a specific figure to a bitmap stored in an unsigned byte array

f = figure;
surf(peaks);
bytes = figToImStream('figHandle',f,...
 'imageFormat','bmp',...
 'outputType','uint8');

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'figHandle', f, 'imageFormat', 'bmp', 'outputType', 'uint8' specifies the
figure f is streamed into an unsigned byte array as a bitmap.

figHandle — Figure to stream
empty character array or string (default) | figure handle

Figure to stream, specified as the comma-separated pair consisting of 'figHandle' and a figure
handle.

 figToImStream

13-9

imageFormat — Encoding format
png (default) | jpg | bmp | gif

Encoding format, specified as the comma-separated pair consisting of 'imageFormat' and one of
these values:

• png — encode the image using the Portable Network Graphics (PNG) format
• jpg — encode the image using the JPEG format
• bmp — encode the image as a bitmap
• gif — encode the image using the Graphics Interchange Format (GIF)

outputType — Type of bytes to store the image stream
int8 (default) | uint8

Type of bytes to store the image stream, specified as the comma-separated pair consisting of
'outputType' and one of these values:

• int8 — use a signed byte array
• uint8 — use an unsigned byte array

Output Arguments
output — Encoded figure data
byte array

Encoded figure data returned as a byte array.

Introduced in R2009b

13 Functions

13-10

getmcruserdata
Retrieve MATLAB array value associated with a given key

Syntax
value = getmcruserdata(key)

Description
value = getmcruserdata(key) returns MATLAB data associated with the string key in the
current MATLAB Runtime instance. If there is no data associated with the key, it returns an empty
matrix.

This function is part of the MATLAB Runtime User Data interface API. It is available both in MATLAB
and in deployed applications created with MATLAB Compiler and MATLAB Compiler SDK.

Examples
Get the magic square data associated with the string 'magic' in the current instance of the MATLAB
Runtime.

value = magic(3);
setmcruserdata('magic', value);
getmcruserdata('magic')

ans =
 8 1 6
 3 5 7
 4 9 2

Input Arguments
key — Key associated with MATLAB data
string

key is the MATLAB string with which MATLAB data value is associated within the current instance
of the MATLAB Runtime.

Output Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

value is the MATLAB data associated with input string key for the current instance of the MATLAB
Runtime.

See Also
setmcruserdata

 getmcruserdata

13-11

Introduced in R2008b

13 Functions

13-12

isdeployed
Determine whether code is running in deployed or MATLAB mode

Syntax
x = isdeployed

Description
x = isdeployed returns true (1) when the function is running in deployed mode and false (0) if it is
running in a MATLAB session.

If you include this function in an application and compile the application, the function will return true
when the application is run in deployed mode. If you run the application containing this function in a
MATLAB session, the function will return false.

Introduced before R2006a

 isdeployed

13-13

ismcc
Test if code is running during compilation process (using mcc)

Syntax
x = ismcc

Description
x = ismcc returns true when the function is being executed by mcc dependency checker and false
otherwise.

When this function is executed by the compilation process started by mcc, it will return true. This
function will return false when executed within MATLAB as well as in deployed mode. To test for
deployed mode execution, use isdeployed. This function should be used to guard code in
matlabrc, or hgrc (or any function called within them, for example startup.m in the example on
this page), from being executed by MATLAB Compiler (mcc) or MATLAB Compiler SDK.

In a typical example, a user has ADDPATH calls in their MATLAB code. These can be guarded from
executing using ismcc during the compilation process and isdeployed for the deployed application
as shown in the example on this page.

Examples
`% startup.m
 if ~(ismcc || isdeployed)
 addpath(fullfile(matlabroot,'work'));
 end

See Also
isdeployed | mcc

13 Functions

13-14

libraryCompiler
Build and package functions for use in external applications

Syntax
libraryCompiler
libraryCompiler project_name

Description
libraryCompiler opens the Library Compiler app for the creation of a new compiler project

libraryCompiler project_name opens the Library Compiler app with the project preloaded.

Examples

Create a New Project

Open the Library Compiler app to create a new project.

libraryCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To build applications, use the mcc command,
and to package and create an installer, use the compiler.package.installer function.

Introduced in R2013b

 libraryCompiler

13-15

mbuild
Compile and link source files against MATLAB generated shared libraries

Syntax
mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
 [objectfile1 ... objectfileN] [libraryfile1 ... libraryfileN]

Description
mbuild compiles and links customer written C or C++ code against MATLAB generated shared
libraries.

Some of these options (-f, -g, and -v) are available on the mcc command line and are passed along
to mbuild. Others can be passed along using the -M option to mcc. For details on the -M option, see
the mcc reference page.

Supported Source File Types
Supported types of source files are:

• .c
• .cpp

Arguments to mbuild that are not options and do not belong to one of the supported source file types
are assumed to be library names, and are passed to the linker.

Options
This table lists the set of mbuild options. If no platform is listed, the option is available on both UNIX
and Windows.

Option Description
@<rspfile> (Windows only) Include the contents of the text file <rspfile> as

command line arguments to mbuild.
-c Compile only. Creates an object file only.
-D<name> Define a symbol name to the C preprocessor. Equivalent to a

#define <name> directive in the source.
-D<name>=<value> Define a symbol name and value to the C preprocessor. Equivalent

to a #define <name> <value> directive in the source.
-f <optionsfile> Specify location and name of options file to use. Overrides the

mbuild default options file search mechanism.
-g Create an executable containing additional symbolic information for

use in debugging. This option disables the mbuild default behavior
of optimizing built object code (see the -O option).

13 Functions

13-16

Option Description
-h[elp] Print help for mbuild.
-I<pathname> Add <pathname> to the list of folders to search for #include files.
-l<name> Link with object library. On Windows systems, <name> expands to

<name>.lib or lib<name>.lib and on UNIX systems, to
lib<name>.so or lib<name>.dylib. Do not add a space after
this switch.

Note When linking with a library, it is essential that you first
specify the path (with -I<pathname>, for example).

-L<folder> Add <folder> to the list of folders to search for libraries specified
with the -l option. On UNIX systems, you must also set the run-
time library paths. Do not add a space after this switch.

-n No execute mode. Print out any commands that mbuild would
otherwise have executed, but do not actually execute any of them.

-O Optimize the object code. Optimization is enabled by default and by
including this option on the command line. If the -g option appears
without the -O option, optimization is disabled.

-outdir <dirname> Place all output files in folder <dirname>.
-output <resultname> Create an executable named <resultname>. An appropriate

executable extension is automatically appended. Overrides the
mbuild default executable naming mechanism.

-setup Interactively specify the C/C++ compiler options file to use as the
default for future invocations of mbuild by placing it in the user
profile folder (returned by the prefdir command). When this
option is specified, no other command line input is accepted.

-setup -client
mbuild_com

Interactively specify the COM compiler options file to use as the
default for future invocations of mbuild by placing it in the user
profile folder (returned by the prefdir command). When this
option is specified, no other command line input is accepted.

-U<name> Remove any initial definition of the C preprocessor symbol <name>.
(Inverse of the -D option.)

-v Verbose mode. Print the values for important internal variables
after the options file is processed and all command line arguments
are considered. Prints each compile step and final link step fully
evaluated.

 mbuild

13-17

Option Description
<name>=<value> Supplement or override an options file variable for variable <name>.

This option is processed after the options file is processed and all
command line arguments are considered. You may need to use the
shell's quoting syntax to protect characters such as spaces that
have a meaning in the shell syntax. On Windows double quotes are
used (e.g., COMPFLAGS="opt1 opt2"), and on UNIX single quotes
are used (e.g., CFLAGS='opt1 opt2').

It is common to use this option to supplement a variable already
defined. To do this, refer to the variable by prepending a $ (e.g.,
COMPFLAGS="$COMPFLAGS opt2" on Windows or
CFLAGS='$CFLAGS opt2' on UNIX shell).

For the MinGW-w64 compiler, which is based on gcc/g++, use
single quotes (').

Examples
To change the default C/C++ compiler for use with MATLAB Compiler SDK, use

mbuild -setup

To compile and link an external C program foo.c against libfoo, use

mbuild foo.c -L. -lfoo (on UNIX)
mbuild foo.c libfoo.lib (on Windows)

This assumes both foo.c and the library generated above are in the current working folder.

Introduced before R2006a

13 Functions

13-18

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -l options mfilename1 mfilename2...mfilenameN

mcc -W cpplib:library_name[,{all|legacy|generic}] options mfilename1
mfilename2...mfilenameN

mcc -W com:component_name,className -T link:lib options class{className:
mfilename1 mfilename2...mfilenameN}

mcc -W dotnet:assembly_name,className,framework_version,security,remote_type
-T link:lib options mfilename1 mfilename2...mfilenameN
mcc -W dotnet:assembly_name,className,framework_version,security,remote_type
-T link:lib options class{className:mfilename1 mfilename2...mfilenameN}

mcc -W java:packageName,className options mfilename1 mfilename2...mfilenameN
mcc -W java:packageName,className options class{className:mfilename1
mfilename2...mfilenameN}

mcc -W python:namespace.packageName -T link:lib options mfilename1
mfilename2...mfilenameN

mcc -W CTF:archive_name -U options mfilename1 mfilename2...mfilenameN

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN

Description
mcc options mfilename1 mfilename2...mfilenameN compiles the functions as specified by
the options.

The options used depend on the intended results of the compilation. For information on compiling:

• standalone applications, Excel add-ins, or Hadoop® jobs see mcc for MATLAB Compiler

C Shared Library

mcc -l options mfilename1 mfilename2...mfilenameN compiles the listed functions into a C
shared library and generates C wrapper code for integration with other applications.

This syntax is equivalent to -W lib:libname -T link:lib.

 mcc

13-19

C++ Shared Library

mcc -W cpplib:library_name[,{all|legacy|generic}] options mfilename1
mfilename2...mfilenameN compiles the listed functions into a C++ shared library and generates
C++ wrapper code for integration with other applications.

• library_name — Specifies the name of the shared library.
• all— Generates shared libraries using both the mwArray API and the generic interface that uses

the MATLAB Data API. This is the default.
• legacy— Generates shared libraries using the mwArrayAPI.
• generic— Generates shared libraries using the MATLAB Data API.

COM Component

mcc -W com:component_name,className -T link:lib options class{className:
mfilename1 mfilename2...mfilenameN} compiles the listed functions into a generic Microsoft
COM component.

• component_name — Specifies the name of the COM component.

• className — Specifies the name of the class.

.NET Assembly

mcc -W dotnet:assembly_name,className,framework_version,security,remote_type
-T link:lib options mfilename1 mfilename2...mfilenameN creates a .NET assembly with
a single class from the specified files.

• assembly_name — Specifies the name of the assembly preceded by its namespace, which is a
period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the .NET class to be created.
• framework_version — Specifies the version of the Microsoft .NET Framework you want to use

to compile the assembly. Specify either:

• 0.0 — Use the latest supported version on the target machine.
• version_major.version_minor — Use a specific version of the framework.

Features are often version-specific. Consult the documentation for the feature you are
implementing to get the Microsoft .NET Framework version requirements.

• security — Specifies whether the assembly to be created is a private assembly or a shared
assembly.

• To create a private assembly, specify Private.
• To create a shared assembly, specify the full path to the encryption key file used to sign the

assembly.
• remote_type — Specifies the remoting type of the assembly. Values are remote and local.

mcc -W dotnet:assembly_name,className,framework_version,security,remote_type
-T link:lib options class{className:mfilename1 mfilename2...mfilenameN} creates
a .NET assembly with multiple classes from the specified files.

• assembly_name — Specifies the name of the assembly and its namespace, which is a period-
separated list, such as companyname.groupname.component.

13 Functions

13-20

• className — Specifies the name of the .NET class to be created.

Note You can include multiple class specifiers.
• framework_version — Specifies the version of the Microsoft .NET Framework you want to use

to compile the assembly. Specify either:

• 0.0 — Use the latest supported version on the target machine.
• version_major.version_minor — Use a specific version of the framework.

Features are often version-specific. Consult the documentation for the feature you are
implementing to get the Microsoft .NET Framework version requirements.

• security — Specifies whether the assembly to be created is a private assembly or a shared
assembly.

• To create a private assembly, specify Private.
• To create a shared assembly, specify the full path to the encryption key file used to sign the

assembly.
• remote_type — Specifies the remoting type of the assembly. Values are remote and local.

Java Package

mcc -W java:packageName,className options mfilename1 mfilename2...mfilenameN
creates a Java package from the specified files.

• packageName — Specifies the name of the Java package and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the last item in packageName.

mcc -W java:packageName,className options class{className:mfilename1
mfilename2...mfilenameN} creates a Java package with multiple classes from the specified files.

• packageName — Specifies the name of the Java package and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the last item in packageName.

Note You can include multiple class specifiers.

Python Package

mcc -W python:namespace.packageName -T link:lib options mfilename1
mfilename2...mfilenameN creates a Python package from the specified files.

• namespace — Specifies the optional namespace for the package, which is a period-separated list,
such as companyname.groupname.component

• packageName — Specifies the name of the Python package.

 mcc

13-21

Deployable Archive for MATLAB Production Server

mcc -W CTF:archive_name -U options mfilename1 mfilename2...mfilenameN instructs
the compiler to create a deployable archive (.ctf file) for use with a MATLAB Production Server
instance.

The syntax also creates the server-side deployable archive (.ctf file) for Microsoft Excel add-ins.
Excel Add-In for MATLAB Production Server

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN creates a client-side Microsoft Excel add-in from the specified files that
can be used to send requests to MATLAB Production Server from Excel. Creating the client-side add-
in must be preceded by creating a server-side deployable archive (.ctf file) from the specified files.
A purely client side add-in is not viable.

• addin_name — Specifies the name of the add-in and its namespace, which is a period-separated
list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the class name,
mcc uses the addin_name as the default.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version number, mcc uses
the latest version.

• minor — Specifies the minor version number. If you do not specify a version number, mcc uses
the latest version.

• input_marshaling_flags — Specifies options for how data is marshaled between Microsoft
Excel and MATLAB.

• -replaceBlankWithNaN — Specifies that a blank in Microsoft Excel is mashaled into NaN in
MATLAB. If you do not specify this flag, blanks are marshaled into 0.

• -convertDateToString — Specifies that dates in Microsoft Excel are marshaled into
MATLAB character vectors. If you do not specify this flag, dates are marshaled into MATLAB
doubles.

• output_marshaling_flags — Specifies options for how data is marshaled between MATLAB
and Microsoft Excel.

• -replaceNaNWithZero — Specifies that NaN in MATLAB is marshaled into a 0 in Microsoft
Excel. If you do not specify this flag, NaN is marshalled into #QNAN in Visual Basic®.

• -convertNumericToDate — Specifies that MATLAB numeric values are marshaled into
Microsoft Excel dates. If you do not specify this flag, Microsoft Excel does not receive dates as
output.

Examples
Create a C shared library
mcc -l mymagic.m

Create a C shared library with a system-level file version number (Windows only)

Create a C shared library in Windows with version number 4.3.1.7.

13 Functions

13-22

mcc -W 'lib:myCSharedLib,version=4.3.1.7' -T link:lib mymagic.m

Create a C++ shared library

Use the mwArray API

mcc -W 'cpplib:mymagic,legacy' mymagic.m

Use the MATLAB Data API

mcc -W 'cpplib:mymagic,generic' mymagic.m

Use both the mwArray API and the MATLAB Data API

mcc -W 'cpplib:mymagic,all' mymagic.m

OR

mcc -W 'cpplib:mymagic' mymagic.m

Create a C++ shared library with a system-level file version number (Windows only)

Create a C++ shared library in Windows with version number 3.7.1.5.

mcc -W 'cpplib:mymagic,all,version=3.7.1.5' -T link:lib mymagic.m

Create a COM component

Create a COM component in Windows with version number 7.10.1.3.

mcc -W 'com:myCOMComponent,myClass,version=7.10.1.3' -T link:lib class{myClass:mymagic.m}

Create a Java package containing multiple classes

mcc -W 'java:myMatrix,add' class{add:add.m} class{sub:minus.m}

Create a Python package

mcc -W python:myMagic -T link:lib magic.m

Create a deployable archive for MATLAB Production Server

mcc -W CTF:myDeployableArchive -U mymagic.m

Create an Excel add-in for MATLAB Production Server

mcc -W 'mpsxl:myDeployableArchvie,myExcelClass,version=1.0' -T link:lib mymagic.m

Input Arguments
mfilename1 mfilename2...mfilenameN — Files to be compiled
list of filenames

One or more files to be compiled, specified as a space-separated list of filenames.

options — Options for customizing the output
-a | -b | -B | -c | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -R | -S | -T | -u | -U | -v | -w | -W | -X |
-Y

 mcc

13-23

Options for customizing the output, specified as a list of character vectors or string scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added. Multiple -a
options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path, so
specifying the full path name is optional. These files are not passed to mbuild, so you can include
files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are added
recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the deployable
archive. The folder subtree in testdir is preserved in the deployable archive.

If the filename includes a wildcard pattern, only the files in the folder that match the pattern are
added to the deployable archive and subfolders of the given path are not processed recursively.
For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and subfolders under ./
testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the deployable archive
and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at the time of
compilation, a path entry is added to the application's run-time path so that they appear on the
path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is preserved, with
some modifications, but relative to a subdirectory of the runtime cache directory, not to the user's
local folder. The cache directory is created from the deployable archive the first time the
application is executed. You can use the isdeployed function to determine whether the
application is being run in deployed mode, and adjust the path accordingly. The -a option also
creates a .auth file for authorization purposes.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other files from
that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications work without
any need to change the classpath as long as the Java class is not a member of a package. The

13 Functions

13-24

same applies for JAR files. However, if the class being added is a member of a package, the
MATLAB code needs to make an appropriate call to javaaddpath to update the classpath with
the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function interface to
the COM object generated by MATLAB Compiler. When imported into the workbook Visual Basic
code, this code allows the MATLAB function to be seen as a cell formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle can include
replacement parameters for compiler options that accept names and version numbers. See “Using
Bundles to Build MATLAB Code” on page 10-4.

• -c

When used in conjunction with the -l option, suppresses compiling and linking of the generated C
wrapper code. The -c option cannot be used independently of the -l option.

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.
• -f

Override the default options file with the specified options file. It specifically applies to the C/C++
shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use different
ANSI compilers for different invocations of the compiler. This option is a direct pass-through to
mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB Compiler SDK.
It also causes mbuild to pass appropriate debugging flags to the system C/C++ compiler. The
debug option lets you backtrace up to the point where you can identify if the failure occurred in
the initialization of MATLAB Runtime, the function call, or the termination routine. This option
does not let you debug your MATLAB files with a C/C++ debugger.

 mcc

13-25

• -I

Add a new folder path to the list of included folders. Each -I option appends the folder to the end
of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files, followed by
directory2. This option is important for standalone compilation where the MATLAB path is not
available.

If used in conjunction with the -N option, the -I option adds the folder to the compilation path in
the same position where it appeared in the MATLAB path rather than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to execute
successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for defining compile-
time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.
• -n

The -n option automatically identifies numeric command line inputs and treats them as MATLAB
doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is subject to
change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at compile time.
Including -N on the command line lets you replace folders from the original path, while retaining
the relative ordering of the included folders. All subfolders of the included folders that appear on
the original path are also included. In addition, the -N option retains all folders that you included
on the path that are not under matlabroot\toolbox.

13 Functions

13-26

When using the –N option, use the –I option to force inclusion of a folder, which is placed at the
head of the compilation path. Use the –p option to conditionally include folders and their
subfolders; if they are present in the MATLAB path, they appear in the compilation path in the
same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-dependent
extension is added to the specified name (for example, .exe for Windows standalone
applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under matlabroot
\toolbox to the compilation MATLAB path. The files are added in the same order in which they
appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and all its
subfolders that appear on the original path are added to the compilation path in the same
order.

• If a folder is included with -p that is not on the original MATLAB path, that folder is ignored.
(You can use -I to force its inclusion.)

• -R

Provide MATLAB Runtime options. This option is relevant only when building standalone
applications using MATLAB Compiler. The syntax is as follows:

-R option

Option Description Target
-
logfile,
filename

Specify a log file name. MATLAB Compiler

-
nodispla
y

Suppress the MATLAB nodisplay run-time
warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler
-
startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler Standalone
Applications

-
complete
msg

Customizable user message displayed when
initialization is complete.

MATLAB Compiler Standalone
Applications

 mcc

13-27

Caution When running on Mac OS X, if you use -nodisplay as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must occur before
calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK, mcc still
compiles without errors and generates the results. But the -R option doesn't apply to these
libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets its own
MATLAB Runtime context. The context includes a global MATLAB workspace for variables, such
as the path and a base workspace for each function in the class. If multiple instances of a class are
created, each instance gets an independent context. This ensures that changes made to the global
or base workspace in one instance of the class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple instances of
a class are created, they use the context created by the first instance which saves startup time and
some resources. However, any changes made to the global workspace or the base workspace by
one instance impacts all class instances. For example, if instance1 creates a global variable A in
a singleton MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....
Excel add-in Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
.NET assembly Default behavior for target is singleton MATLAB

Runtime. You do not need to perform other steps.
COM component • Using the Library Compiler app, click Settings

and add -S to the Additional parameters
passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

Target Description
compile:exe Generate a C/C++ wrapper file, and compile

C/C++ files to an object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file, and compile
C/C++ files to an object form suitable for
linking into a shared library or DLL.

link:exe Same as compile:exe and also link object
files into a standalone application.

13 Functions

13-28

Target Description
link:lib Same as compile:lib and also link object

files into a shared library or DLL.
• -u

Register COM component for the current user only on the development machine. The argument
applies only to the generic COM component and Microsoft Excel add-in targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List the compile-time warnings that have abbreviated

identifiers, together with their status.
-w enable Enable all compile-time warnings.
-w disable[:<string>] Disable specific compile-time warnings associated with

<string>. Omit the optional <string> to apply the
disable action to all compile-time warnings.

-w enable[:<string>] Enable specific compile-time warnings associated with
<string>. Omit the optional <string> to apply the
enable action to all compile-time warnings.

-w error[:<string>] Treat specific compile-time warnings associated with
<string> as an error. Omit the optional <string> to
apply the error action to all compile-time warnings.

-w off[:<string>] Turn off warnings for specific error messages defined by
<string>. Omit the optional <string> to apply the off
action to all runtime warnings.

-w on[:<string>] Turn on runtime warnings associated with <string>.
Omit the optional <string> to apply the on action to all
runtime warnings.

You can also turn warnings on or off in your MATLAB code.

 mcc

13-29

For example, to turn off warnings for deployed applications (specified using isdeployed) in
startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
 warning on
end

You can also specify multiple -w options.

For example, if you want to disable all warnings except repeated_file, you write:

-w disable -w enable:repeated_file

When you specify multiple -w options, they are processed from left to right.
• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files generated by the
compiler. You provide a list of functions, and the compiler generates the wrapper functions and
any appropriate global variable definitions.

• -X

Use -X to ignore data files read by common MATLAB file I/O functions during dependency
analysis. For a list of MATLAB file I/O functions whose data files are ignored when you use the -X
option, see “App Packaging Dependency Analysis” (MATLAB). For details on how to use -X option,
see %#exclude.

• -Y

Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

Tips
• On Windows, you can generate a system-level file version number for your target file by appending

version=version_number to the target generating mcc syntax. For an example, see “Create a C
++ shared library with a system-level file version number (Windows only)” on page 13-23.

13 Functions

13-30

version_number — Specifies the version of the target file as major.minor.bug.build in the
file system. You are not required to specify a version number. If you do not specify a version
number, mcc sets the version number, by default, to 1.0.0.0.

• major — Specifies the major version number. If you do not specify a version number, mcc sets
major to 1.

• minor — Specifies the minor version number. If you do not specify a version number, mcc sets
minor to 0.

• bug — Specifies the bug fix maintenance release number. If you do not specify a version
number, mcc sets bug to 0.

• build — Specifies build number. If you do not specify a version number, mcc sets build to 0.

This functionality is supported for C shared libraries, C++ shared libraries, COM
components, .NET assemblies, and Excel add-ins for MATLAB Production Server in MATLAB
Compiler SDK. For supported targets in MATLAB Compiler, see the Tips section in mcc.

See Also
mbuild

Introduced before R2006a

 mcc

13-31

mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding to current
platform

Syntax
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller;

Description
Displays information about available MATLAB Runtime installers using the format:
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current platform.
• MAJOR is the major version number of the installer.
• MINOR is the minor version number of the installer.
• PLATFORM is the name of the current platform (returned by COMPUTER(arch)).

If no MATLAB Runtime installer is found, you are prompted to download an installer using the
command compiler.runtime.download.

Note You must distribute the MATLAB Runtime library to your end users to enable them to run
applications developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install and Configure the MATLAB Runtime”for more information about the MATLAB Runtime
installer.

Examples
Find MATLAB Runtime Installer Location

Display the location of MATLAB Runtime installers for a particular platform. This example shows
output for a win64 system. The release number is called R20xxx indicating the release for which the
MATLAB Runtime installer has been downloaded.

mcrinstaller

C:\Program Files\MATLAB\R20xxx\toolbox\compiler\deploy\win64\MCR_R20xxx_win64_installer.exe

For example, for R2018b, the path would be:

C:\Program Files\MATLAB\R2018b\toolbox\compiler\deploy\win64\MCR_R2018b_win64_installer.exe

Introduced in R2009a

13 Functions

13-32

mcrversion
Determine version of installed MATLAB Runtime

Syntax
[major, minor] = mcrversion;

Description
The MATLAB Runtime version number consists of two digits, separated by a decimal point. This
function returns each digit as a separate output variable: [major, minor] = mcrversion; Major
and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more outputs, as
follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples
mcrversion
ans =
 7

Introduced in R2008a

 mcrversion

13-33

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name

Description
productionServerCompiler opens the Production Server Compiler app for the creation of a new
compiler project.

productionServerCompiler project_name opens the Production Server Compiler app with the
project preloaded.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Compatibility Considerations
-build and -package options will be removed
Not recommended starting in R2020a

The -build and -package options will be removed. To generate deployable archives, use the mcc
command or the Production Server Compiler app.

Introduced in R2014a

13 Functions

13-34

setmcruserdata
Associate MATLAB data value with a key

Syntax
void setmcruserdata(key, value)

Description
void setmcruserdata(key, value) associates the MATLAB data value with the string key in
the current MATLAB Runtime instance. If there is already a value associated with the key, it is
overwritten.

This function is part of the MATLAB Runtime User Data interface API. It is available both in MATLAB
and in deployed applications created with MATLAB Compiler and MATLAB Compiler SDK.

Examples
Store a cell array and associate it with the string 'PI_Data' in the current instance of the MATLAB
Runtime.

value = {3.14159, 'March 14th is PI day'};
setmcruserdata('PI_Data', value);

Input Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

Value is the MATLAB data associated with input string key for the current instance of the MATLAB
Runtime.

key — Key associated with MATLAB data
string

key is a MATLAB string with which MATLAB data value is associated within the current instance of
the MATLAB Runtime.

See Also
getmcruserdata

Introduced in R2008a

 setmcruserdata

13-35

Apps

14

Library Compiler
Package MATLAB programs for deployment as shared libraries and components

Description
The Library Compiler app packages MATLAB functions to include MATLAB functionality in
applications written in other languages.

Open the Library Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter libraryCompiler.

Examples
• “Create Excel Add-In from MATLAB” (MATLAB Compiler)
• “Create a C Shared Library with MATLAB Code”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”
• “Generate a .NET Assembly and Build a .NET Application”
• “Create a Generic COM Component with MATLAB Code”
• “Generate a Java Package and Build a Java Application”
• “Generate a Python Package and Build a Python Application”

Parameters
type — type of library generated
C Shared Library | C++ Shared Library | Excel Add-in | Generic COM Component | Java Package
| .NET Assembly | Python Package

Type of library to generate.

exported functions — functions to package
list of character vectors

Functions to package as a list of character vectors.

packaging options — method for installing the MATLAB Runtime with the compiled library
MATLAB Runtime downloaded from web (default) | MATLAB Runtime included in package

You can decide whether or not to include the MATLAB Runtime fallback for MATLAB Runtime
installer in the generated application by selecting one of the two options in the Packaging Options
section. Including the MATLAB Runtime installer in the package significantly increases the size of the
package.

14 Apps

14-2

Runtime downloaded from web — Generates an installer that downloads the MATLAB Runtime and
installs it along with the deployed MATLAB application.

Runtime included in package — Generates an installer that includes the MATLAB Runtime installer.

The first time you select this option, you are prompted to download the MATLAB Runtime installer or
obtain a CD if you do not have internet access.

files required for your library to run — files that must be included with library
list of files

Files that must be included with library as a list of files.

files installed for your end user — optional files installed with library
list of files

Optional files installed with library as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

end user files — folder where files for building a custom installer are stored
character vector

Folder where files for building a custom installer are stored are stored as a character vector.

packaged installers — folder where generated installers are stored
character vector

Folder where generated installers are stored as a character vector.

Library Information

library name — name of the installed library
character vector

Name of the installed library as a character vector.

The default value is the name of the first function listed in the Exported Functions field of the app.

version — version of the generated library
character vector

Version of the generated library as a character vector.

splash screen — image displayed on installer
image

 Library Compiler

14-3

Image displayed on installer as an image.

author name — name of the library author
character vector

Name of the library author as a character vector.

e-mail — e-mail address used to contact library support
character vector

E-mail address used to contact library support as a character vector.

summary — brief description of library
character vector

Brief description of library as a character vector.

description — detailed description of library
character vector

Detailed description of library as a character vector.

Additional Installer Options

default installation folder — folder where artifacts are installed
character vector

Folder where artifacts are installed as a character vector.

installation notes — notes about additional requirements for using artifacts
character vector

Notes about additional requirements for using artifacts as a character vector.

Programmatic Use
libraryCompiler

See Also
Topics
“Create Excel Add-In from MATLAB” (MATLAB Compiler)
“Create a C Shared Library with MATLAB Code”
“Generate a C++ mwArray API Shared Library and Build a C++ Application”
“Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”
“Generate a .NET Assembly and Build a .NET Application”
“Create a Generic COM Component with MATLAB Code”
“Generate a Java Package and Build a Java Application”
“Generate a Python Package and Build a Python Application”

14 Apps

14-4

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB functions. It
also packages MATLAB functions into archives for deployment to MATLAB Production Server.

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create a Deployable Archive for MATLAB Production Server” (MATLAB Production Server)
• “Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server”

(MATLAB Production Server)

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

 Production Server Compiler

14-5

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

Folder where files for building a custom installer are stored are stored as a character array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

Programmatic Use
productionServerCompiler

See Also
Topics
“Create a Deployable Archive for MATLAB Production Server” (MATLAB Production Server)
“Create and Install a Deployable Archive with Excel Integration For MATLAB Production Server”
(MATLAB Production Server)

Introduced in R2013b

14 Apps

14-6

	Overview
	How Does MATLAB Deploy Functions?
	MEX-Files, DLLs, or Shared Libraries
	Dependency Analysis
	Function Dependency
	Data File Dependency

	Deployable Archive
	Additional Details

	Write Deployable MATLAB Code
	Write Deployable MATLAB Code
	Packaged Applications Require Functions
	Packaged Applications Do Not Process MATLAB Files at Run Time
	Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files
	Use isdeployed Functions To Execute Deployment-Specific Code Paths
	Gradually Refactor Applications That Depend on Noncompilable Functions
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Techniques for Preserving State

	Calling Shared Libraries in Deployed Applications
	MATLAB Data Files in Compiled Applications
	Explicitly Including MATLAB Data files Using the %#function Pragma
	Load and Save Functions

	Share MATLAB Runtime Instances
	What Is a Singleton MATLAB Runtime?
	Advantages and Disadvantages of Using a Singleton

	Package a C/C++ Shared Library
	Install an ANSI C or C++ Compiler
	Supported ANSI C and C++ Windows Compilers
	Supported ANSI C and C++ UNIX Compilers
	Common Installation Issues and Parameters

	Create a C Shared Library with MATLAB Code
	Create Functions in MATLAB
	Create a C Shared Library Using the Library Compiler App
	Customize the Application and Its Appearance
	Package the Application

	Create C/C++ Shared Libraries from Command Line
	Execute Compiler Projects with deploytool
	Package a Shared Library with mcc
	Differences Between Compiler Apps and Command Line

	Distribute C/C++ Shared Libraries to Application Developers

	Package a .NET Assembly
	Generate a .NET Assembly and Build a .NET Application
	Create Function in MATLAB
	Create .NET Assembly Using Library Compiler App
	Specify Assembly File Settings
	Customize the Application and Its Appearance
	Package the Application
	Build a .NET Application

	Package .NET Assemblies from Command Line
	Execute Compiler Projects with deploytool
	Create .NET Assemblies with mcc
	Differences Between Compiler Apps and Command Line

	Distribute .NET Assemblies to Application Developers

	Package a Java Application
	Configure Your Java Environment
	Install the Required JDK
	Set JAVA_HOME
	Set the CLASSPATH
	Configure the Native Library Path Variables

	Generate a Java Package and Build a Java Application
	Create Function in MATLAB
	Create Java Application Using Library Compiler App
	Specify Package Settings
	Customize the Application and Its Appearance
	Package the Application
	Install and Implement MATLAB Generated Java Application

	Package Java Applications from Command Line
	Execute Compiler Projects with deploytool
	Package a Java Application with mcc
	Differences Between Compiler Apps and Command Line

	Map Functions to Java Class Methods
	Map Functions to Java Classes with the Library Compiler App
	Map Functions to Java Classes with mcc

	Distribute Java Applications to Application Developers

	Package a Python Application
	Generate a Python Package and Build a Python Application
	Create Function in MATLAB
	Create Python Application Using Library Compiler App
	Specify Package Settings
	Customize the Application and Its Appearance
	Package the Application
	Install and Run MATLAB Generated Python Application

	Package Python Applications from Command Line
	Execute Compiler Projects with deploytool
	Package a Python Application with mcc
	Differences Between Compiler Apps and Command Line

	Distribute Python Applications to Application Developers

	Compile a Deployable Archive for MATLAB Production Server
	Package Deployable Archives with Production Server Compiler App
	Create Function In MATLAB
	Create Deployable Archive with Production Server Compiler App
	Customize the Application and Its Appearance
	Package the Application

	Package Deployable Archives from Command Line
	Execute Compiler Projects with deploytool
	Package a Deployable Archive with mcc
	Differences Between Compiler Apps and Command Line

	Build Excel Add-In and Deployable Archive

	Package a COM Component
	Create a Generic COM Component with MATLAB Code
	Create Function in MATLAB
	Create Generic COM Component Using Library Compiler App
	Customize the Application and Its Appearance
	Package the Application

	Package COM Components from Command Line
	Execute Compiler Projects with deploytool
	Create COM Component with mcc
	Differences Between Compiler Apps and Command Line

	Distribute COM Components to Application Developers

	Customizing a Compiler Project
	Customize an Application
	Customize the Installer
	Manage Required Files in Compiler Project
	Sample Driver File Creation
	Specify Files to Install with Application
	Additional Runtime Settings
	API Selection for C++ Shared Library

	Manage Support Packages
	Using a Compiler App
	Using the Command Line

	Advanced Uses of the Command Line Compiler
	Simplify Compilation Using Macros
	Macros
	Working With Macros

	Invoke MATLAB Build Options
	Specify Full Path Names to Build MATLAB Code
	Using Bundles to Build MATLAB Code

	MATLAB Runtime Component Cache and Deployable Archive Embedding
	Overriding Default Behavior
	For More Information

	Work with the MATLAB Runtime
	MATLAB Runtime Startup Options
	Retrieve MATLAB Runtime Startup Options

	Using the MATLAB Runtime User Data Interface
	MATLAB Functions
	Set and Retrieve MATLAB Runtime Data for Shared Libraries

	Display the MATLAB Runtime Initialization Messages
	Best Practices

	Limitations and Restrictions
	Limitations
	Packaging MATLAB and Toolboxes
	Fixing Callback Problems: Missing Functions
	Finding Missing Functions in a MATLAB File
	Suppressing Warnings on the UNIX System
	Cannot Use Graphics with the -nojvm Option
	Cannot Create the Output File
	No MATLAB File Help for Packaged Functions
	No MATLAB Runtime Versioning on Mac OS X
	Older Neural Networks Not Deployable with MATLAB Compiler
	Restrictions on Calling PRINTDLG with Multiple Arguments in Packaged Mode
	Packaging a Function with which Does Not Search Current Working Folder
	Restrictions on Using C++ SetData to Dynamically Resize an mwArray
	Accepted File Types for Packaging

	Functions Not Supported for Compilation by MATLAB Compiler and MATLAB Compiler SDK

	Functions
	%#function
	componentinfo
	ctfroot
	deploytool
	figToImStream
	getmcruserdata
	isdeployed
	ismcc
	libraryCompiler
	mbuild
	mcc
	mcrinstaller
	mcrversion
	productionServerCompiler
	setmcruserdata

	Apps
	Library Compiler
	Production Server Compiler

